

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	patsy 0.2.1 documentation

patsy - Describing statistical models in Python

Contents:

	Overview
	Download

	Requirements

	Installation

	Contact

	License

	Users

	Quickstart

	How formulas work
	The formula language

	From terms to matrices

	Technical details

	Footnotes

	Coding categorical data

	Stateful transforms
	Builtin stateful transforms

	Defining a stateful transform

	Model specification for experts and computers
	The factor protocol

	Alternative formula implementations

	Using Patsy in your library
	Using the high-level interface

	Extending the formula syntax

	Differences between R and Patsy formulas

	Python 2 versus Python 3

	patsy API reference
	Basic API

	Convenience utilities

	Design metadata

	Stateful transforms

	Handling categorical data

	Spline regression

	Working with formulas programmatically

	Working with the Python execution environment

	Building design matrices

	Missing values

	Linear constraints

	Origin tracking

	patsy.builtins API reference

	Changes
	v0.2.1

	v0.2.0

	v0.1.0

Indices and tables

	Index

	Search Page

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

Overview

“It’s only a model.” [https://en.wikipedia.org/wiki/Patsy_%28Monty_Python%29]

patsy is a Python package for describing statistical models
(especially linear models, or models that have a linear component)
and building design matrices. It is closely inspired by and compatible
with the formula [http://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models] mini-language used in R [http://www.r-project.org/] and S [https://secure.wikimedia.org/wikipedia/en/wiki/S_programming_language].

For instance, if we have some variable y, and we want to regress it
against some other variables x, a, b, and the interaction [https://secure.wikimedia.org/wikipedia/en/wiki/Interaction_%28statistics%29]
of a and b, then we simply write:

patsy.dmatrices("y ~ x + a + b + a:b", data)

and Patsy takes care of building appropriate matrices. Furthermore,
it:

	Allows data transformations to be specified using arbitrary Python
code: instead of x, we could have written log(x), (x >
0), or even log(x) if x > 1e-5 else log(1e-5),

	Provides a range of convenient options for coding categorical [https://secure.wikimedia.org/wikipedia/en/wiki/Level_of_measurement#Nominal_scale]
variables, including automatic detection and removal of
redundancies,

	Knows how to apply ‘the same’ transformation used on original data
to new data, even for tricky transformations like centering or
standardization (critical if you want to use your model to make
predictions),

	Has an incremental mode to handle data sets which are too large to
fit into memory at one time,

	Provides a language for symbolic, human-readable specification of
linear constraint matrices,

	Has a thorough test suite (>97% statement coverage) and solid
underlying theory, allowing it to correctly handle corner cases that
even R gets wrong, and

	Features a simple API for integration into statistical packages.

What Patsy won’t do is, well, statistics — it just lets you
describe models in general terms. It doesn’t know or care whether you
ultimately want to do linear regression, time-series analysis, or fit
a forest of decision trees [https://secure.wikimedia.org/wikipedia/en/wiki/Decision_tree_learning],
and it certainly won’t do any of those things for you — it just
gives a high-level language for describing which factors you want your
underlying model to take into account. It’s not suitable for
implementing arbitrary non-linear models from scratch; for that,
you’ll be better off with something like Theano [http://deeplearning.net/software/theano/], SymPy [http://sympy.org/], or just plain Python. But if you’re using a
statistical package that requires you to provide a raw model matrix,
then you can use Patsy to painlessly construct that model matrix; and
if you’re the author of a statistics package, then I hope you’ll
consider integrating Patsy as part of your front-end.

Patsy’s goal is to become the standard high-level interface to
describing statistical models in Python, regardless of what particular
model or library is being used underneath.

Download

The current release may be downloaded from the Python Package index at

http://pypi.python.org/pypi/patsy/

Or the latest development version may be found in our Git
repository [https://github.com/pydata/patsy]:

git clone git://github.com/pydata/patsy.git

Requirements

Installing patsy requires:

	Python [http://python.org/] (version 2.4 or later; Python 3 is
fully supported)

	NumPy [http://numpy.scipy.org/]

Installation

If you have pip installed, then a simple

pip install --upgrade patsy

should get you the latest version. Otherwise, download and unpack the
source distribution, and then run

python setup.py install

Contact

Post your suggestions and questions directly to the pydata mailing
list [https://groups.google.com/group/pydata]
(pydata@googlegroups.com, gmane archive [http://news.gmane.org/gmane.comp.python.pydata]), or to our bug
tracker [https://github.com/pydata/patsy/issues]. You could also
contact Nathaniel J. Smith directly, but
really the mailing list is almost always a better bet, because more
people will see your query and others will be able to benefit from any
answers you get.

License

2-clause BSD. See the file COPYING [https://github.com/pydata/patsy/blob/master/COPYING] for details.

Users

We currently know of the following projects using Patsy to provide a
high-level interface to their statistical code:

	Statsmodels [http://statsmodels.sourceforge.net/]

	(your project here!)

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

Quickstart

If you prefer to learn by diving in and getting your feet wet, then
here are some cut-and-pasteable examples to play with.

First, let’s import stuff and get some data to work with:

In [1]: import numpy as np

In [2]: from patsy import dmatrices, dmatrix, demo_data

In [3]: data = demo_data("a", "b", "x1", "x2", "y")

demo_data() gives us a mix of categorical and numerical
variables:

In [1]: data
 Out[1]:
{'a': ['a1', 'a1', 'a2', 'a2', 'a1', 'a1', 'a2', 'a2'],
 'b': ['b1', 'b2', 'b1', 'b2', 'b1', 'b2', 'b1', 'b2'],
 'x1': array([1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799,
 -0.97727788, 0.95008842, -0.15135721]),
 'x2': array([-0.10321885, 0.4105985 , 0.14404357, 1.45427351, 0.76103773,
 0.12167502, 0.44386323, 0.33367433]),
 'y': array([1.49407907, -0.20515826, 0.3130677 , -0.85409574, -2.55298982,
 0.6536186 , 0.8644362 , -0.74216502])}

Of course Patsy doesn’t much care what sort of object you store
your data in, so long as it can be indexed like a Python dictionary,
data[varname]. You may prefer to store your data in a pandas [http://pandas.pydata.org] DataFrame, or a numpy
record array... whatever makes you happy.

Now, let’s generate design matrices suitable for regressing y onto
x1 and x2.

In [1]: dmatrices("y ~ x1 + x2", data)
 Out[1]:
(DesignMatrix with shape (8, 1)
 y
 1.49408
 -0.20516
 0.31307
 -0.85410
 -2.55299
 0.65362
 0.86444
 -0.74217
 Terms:
 'y' (column 0),
 DesignMatrix with shape (8, 3)
 Intercept x1 x2
 1 1.76405 -0.10322
 1 0.40016 0.41060
 1 0.97874 0.14404
 1 2.24089 1.45427
 1 1.86756 0.76104
 1 -0.97728 0.12168
 1 0.95009 0.44386
 1 -0.15136 0.33367
 Terms:
 'Intercept' (column 0)
 'x1' (column 1)
 'x2' (column 2))

The return value is a Python tuple containing two DesignMatrix
objects, the first representing the left-hand side of our formula, and
the second representing the right-hand side. Notice that an intercept
term was automatically added to the right-hand side. These are just
ordinary numpy arrays with some extra metadata and a fancy __repr__
method attached, so we can pass them directly to a regression function
like np.linalg.lstsq():

In [1]: outcome, predictors = dmatrices("y ~ x1 + x2", data)

In [2]: betas = np.linalg.lstsq(predictors, outcome)[0].ravel()

In [3]: for name, beta in zip(predictors.design_info.column_names, betas):
 ...: print("%s: %s" % (name, beta))
 ...:
Intercept: 0.579662344123
x1: 0.0885991903554
x2: -1.76479205551

Of course the resulting numbers aren’t very interesting, since this is just
random data.

If you just want the design matrix alone, without the y values,
use dmatrix() and leave off the y ~ part at the beginning:

In [1]: dmatrix("x1 + x2", data)
 Out[1]:
DesignMatrix with shape (8, 3)
 Intercept x1 x2
 1 1.76405 -0.10322
 1 0.40016 0.41060
 1 0.97874 0.14404
 1 2.24089 1.45427
 1 1.86756 0.76104
 1 -0.97728 0.12168
 1 0.95009 0.44386
 1 -0.15136 0.33367
 Terms:
 'Intercept' (column 0)
 'x1' (column 1)
 'x2' (column 2)

We’ll use dmatrix for the rest of the examples, since seeing the
outcome matrix over and over would get boring. This matrix’s metadata
is stored in an extra attribute called .design_info, which is a
DesignInfo object you can explore at your leisure:

In [1]: d = dmatrix("x1 + x2", data)

In [2]: d.design_info.<TAB>
d.design_info.builder d.design_info.slice
d.design_info.column_name_indexes d.design_info.term_name_slices
d.design_info.column_names d.design_info.term_names
d.design_info.describe d.design_info.term_slices
d.design_info.linear_constraint d.design_info.terms

Usually the intercept is useful, but if we don’t want it we can get
rid of it:

In [1]: dmatrix("x1 + x2 - 1", data)
 Out[1]:
DesignMatrix with shape (8, 2)
 x1 x2
 1.76405 -0.10322
 0.40016 0.41060
 0.97874 0.14404
 2.24089 1.45427
 1.86756 0.76104
 -0.97728 0.12168
 0.95009 0.44386
 -0.15136 0.33367
 Terms:
 'x1' (column 0)
 'x2' (column 1)

We can transform variables using arbitrary Python code:

In [1]: dmatrix("x1 + np.log(x2 + 10)", data)
 Out[1]:
DesignMatrix with shape (8, 3)
 Intercept x1 np.log(x2 + 10)
 1 1.76405 2.29221
 1 0.40016 2.34282
 1 0.97874 2.31689
 1 2.24089 2.43836
 1 1.86756 2.37593
 1 -0.97728 2.31468
 1 0.95009 2.34601
 1 -0.15136 2.33541
 Terms:
 'Intercept' (column 0)
 'x1' (column 1)
 'np.log(x2 + 10)' (column 2)

Notice that np.log is being pulled out of the environment where
dmatrix() was called – np.log is accessible because we did
import numpy as np up above. Any functions or variables that you
could reference when calling dmatrix() can also be used inside
the formula passed to dmatrix(). For example:

In [1]: new_x2 = data["x2"] * 100

In [2]: dmatrix("new_x2")
 Out[2]:
DesignMatrix with shape (8, 2)
 Intercept new_x2
 1 -10.32189
 1 41.05985
 1 14.40436
 1 145.42735
 1 76.10377
 1 12.16750
 1 44.38632
 1 33.36743
 Terms:
 'Intercept' (column 0)
 'new_x2' (column 1)

Patsy has some transformation functions “built in”, that are
automatically accessible to your code:

In [1]: dmatrix("center(x1) + standardize(x2)", data)
 Out[1]:
DesignMatrix with shape (8, 3)
 Intercept center(x1) standardize(x2)
 1 0.87995 -1.21701
 1 -0.48395 -0.07791
 1 0.09463 -0.66885
 1 1.35679 2.23584
 1 0.98345 0.69899
 1 -1.86138 -0.71844
 1 0.06598 -0.00417
 1 -1.03546 -0.24845
 Terms:
 'Intercept' (column 0)
 'center(x1)' (column 1)
 'standardize(x2)' (column 2)

See patsy.builtins for a complete list of functions made
available to formulas. You can also define your own transformation
functions in the ordinary Python way:

In [1]: def double(x):
 ...: return 2 * x
 ...:

Arithmetic transformations are also possible, but you’ll need to
“protect” them by wrapping them in I(), so that Patsy knows
that you really do want + to mean addition:

In [1]: dmatrix("I(x1 + x2)", data) # compare to "x1 + x2"
 Out[1]:
DesignMatrix with shape (8, 2)
 Intercept I(x1 + x2)
 1 1.66083
 1 0.81076
 1 1.12278
 1 3.69517
 1 2.62860
 1 -0.85560
 1 1.39395
 1 0.18232
 Terms:
 'Intercept' (column 0)
 'I(x1 + x2)' (column 1)

Note that while Patsy goes to considerable efforts to take in data
represented using different Python data types and convert them into a
standard representation, all this work happens after any
transformations you perform as part of your formula. So, for example,
if your data is in the form of numpy arrays, “+” will perform
element-wise addition, but if it is in standard Python lists, it will
perform concatentation:

In [1]: dmatrix("I(x1 + x2)", {"x1": np.array([1, 2, 3]), "x2": np.array([4, 5, 6])})
 Out[1]:
DesignMatrix with shape (3, 2)
 Intercept I(x1 + x2)
 1 5
 1 7
 1 9
 Terms:
 'Intercept' (column 0)
 'I(x1 + x2)' (column 1)

In [2]: dmatrix("I(x1 + x2)", {"x1": [1, 2, 3], "x2": [4, 5, 6]})
 Out[2]:
DesignMatrix with shape (6, 2)
 Intercept I(x1 + x2)
 1 1
 1 2
 1 3
 1 4
 1 5
 1 6
 Terms:
 'Intercept' (column 0)
 'I(x1 + x2)' (column 1)

Patsy becomes particularly useful when you have categorical
data. If you use a predictor that has a categorical type (e.g. strings
or bools), it will be automatically coded. Patsy automatically
chooses an appropriate way to code categorical data to avoid
producing a redundant, overdetermined model.

If there is just one categorical variable alone, the default is to
dummy code it:

In [1]: dmatrix("0 + a", data)
 Out[1]:
DesignMatrix with shape (8, 2)
 a[a1] a[a2]
 1 0
 1 0
 0 1
 0 1
 1 0
 1 0
 0 1
 0 1
 Terms:
 'a' (columns 0:2)

But if you did that and put the intercept back in, you’d get a
redundant model. So if the intercept is present, Patsy uses
a reduced-rank contrast code (treatment coding by default):

In [1]: dmatrix("a", data)
 Out[1]:
DesignMatrix with shape (8, 2)
 Intercept a[T.a2]
 1 0
 1 0
 1 1
 1 1
 1 0
 1 0
 1 1
 1 1
 Terms:
 'Intercept' (column 0)
 'a' (column 1)

The T. notation is there to remind you that these columns are
treatment coded.

Interactions are also easy – they represent the cartesian product of
all the factors involved. Here’s a dummy coding of each combination
of values taken by a and b:

In [1]: dmatrix("0 + a:b", data)
 Out[1]:
DesignMatrix with shape (8, 4)
 a[a1]:b[b1] a[a2]:b[b1] a[a1]:b[b2] a[a2]:b[b2]
 1 0 0 0
 0 0 1 0
 0 1 0 0
 0 0 0 1
 1 0 0 0
 0 0 1 0
 0 1 0 0
 0 0 0 1
 Terms:
 'a:b' (columns 0:4)

But interactions also know how to use contrast coding to avoid
redundancy. If you have both main effects and interactions in a model,
then Patsy goes from lower-order effects to higher-order effects,
adding in just enough columns to produce a well-defined model. The
result is that each set of columns measures the additional
contribution of this effect – just what you want for a traditional
ANOVA:

In [1]: dmatrix("a + b + a:b", data)
 Out[1]:
DesignMatrix with shape (8, 4)
 Intercept a[T.a2] b[T.b2] a[T.a2]:b[T.b2]
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 1
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 1
 Terms:
 'Intercept' (column 0)
 'a' (column 1)
 'b' (column 2)
 'a:b' (column 3)

Since this is so common, there’s a convenient short-hand:

In [1]: dmatrix("a*b", data)
 Out[1]:
DesignMatrix with shape (8, 4)
 Intercept a[T.a2] b[T.b2] a[T.a2]:b[T.b2]
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 1
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 1
 Terms:
 'Intercept' (column 0)
 'a' (column 1)
 'b' (column 2)
 'a:b' (column 3)

Of course you can use other coding schemes too (or even define your own). Here’s orthogonal polynomial coding:

In [1]: dmatrix("C(c, Poly)", {"c": ["c1", "c1", "c2", "c2", "c3", "c3"]})
 Out[1]:
DesignMatrix with shape (6, 3)
 Intercept C(c, Poly).Linear C(c, Poly).Quadratic
 1 -0.70711 0.40825
 1 -0.70711 0.40825
 1 -0.00000 -0.81650
 1 -0.00000 -0.81650
 1 0.70711 0.40825
 1 0.70711 0.40825
 Terms:
 'Intercept' (column 0)
 'C(c, Poly)' (columns 1:3)

You can even write interactions between categorical and numerical
variables. Here we fit two different slope coefficients for x1;
one for the a1 group, and one for the a2 group:

In [1]: dmatrix("a:x1", data)
 Out[1]:
DesignMatrix with shape (8, 3)
 Intercept a[a1]:x1 a[a2]:x1
 1 1.76405 0.00000
 1 0.40016 0.00000
 1 0.00000 0.97874
 1 0.00000 2.24089
 1 1.86756 0.00000
 1 -0.97728 -0.00000
 1 0.00000 0.95009
 1 -0.00000 -0.15136
 Terms:
 'Intercept' (column 0)
 'a:x1' (columns 1:3)

The same redundancy avoidance code works here, so if you’d rather have
treatment-coded slopes (one slope for the a1 group, and a second
for the difference between the a1 and a2 group slopes), then
you can request it like this:

compare to the difference between "0 + a" and "1 + a"
In [1]: dmatrix("x1 + a:x1", data)
 Out[1]:
DesignMatrix with shape (8, 3)
 Intercept x1 a[T.a2]:x1
 1 1.76405 0.00000
 1 0.40016 0.00000
 1 0.97874 0.97874
 1 2.24089 2.24089
 1 1.86756 0.00000
 1 -0.97728 -0.00000
 1 0.95009 0.95009
 1 -0.15136 -0.15136
 Terms:
 'Intercept' (column 0)
 'x1' (column 1)
 'a:x1' (column 2)

And more complex expressions work too:

In [1]: dmatrix("C(a, Poly):center(x1)", data)
 Out[1]:
DesignMatrix with shape (8, 3)
 Intercept C(a, Poly).Constant:center(x1) C(a, Poly).Linear:center(x1)
 1 0.87995 -0.62222
 1 -0.48395 0.34220
 1 0.09463 0.06691
 1 1.35679 0.95939
 1 0.98345 -0.69541
 1 -1.86138 1.31620
 1 0.06598 0.04666
 1 -1.03546 -0.73218
 Terms:
 'Intercept' (column 0)
 'C(a, Poly):center(x1)' (columns 1:3)

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

How formulas work

Now we’ll describe the fully nitty-gritty of how formulas are parsed
and interpreted. Here’s the picture you’ll want to keep in mind:

[image: _images/formula-structure.png]
The pieces that make up a formula.

Say we have a formula like:

y ~ a + a:b + np.log(x)

This overall thing is a formula, and it’s divided into a left-hand
side, y, and a right-hand side, a + a:b +
np.log(x). (Sometimes you want a formula that has no left-hand
side, and you can write that as ~ x1 + x2 or even x1 + x2.)
Each side contains a list of terms separated by +; on the left
there is one term, y, and on the right, there are four terms:
a and a:b and np.log(x), plus an invisible intercept
term. And finally, each term is the interaction of zero or more
factors. A factor is the minimal, indivisible unit that each
formula is built up out of; the factors here are y, a, b,
and np.log(x). Most of these terms have only one factor – for
example, the term y is a kind of trivial interaction between the
factor y and, well... and nothing. There’s only one factor in that
“interaction”. The term a:b is an interaction between two factors,
a and b. And the intercept term is an interaction between
zero factors. (This may seem odd, but it turns out that defining the
zero-order interaction to produce a column of all ones is very
convenient, just like it turns out to be convenient to define the
product of an empty list [https://en.wikipedia.org/wiki/Empty_product] to be np.prod([]) ==
1.)

Note

In the context of Patsy, the word factor does not refer
specifically to categorical data. What we call a “factor” can
represent either categorical or numerical data. Think of factors
like in multiplying factors together, not like in factorial
design. When we want to refer to categorical data, this manual and
the Patsy API use the word “categorical”.

To make this more concrete, here’s how you could manually construct
the same objects that Patsy will construct if given the above
formula:

from patsy import EvalEnvironment, ModelDesc
env = EvalEnvironment.capture()
ModelDesc([Term([EvalFactor("y", env)])],
 [Term([]),
 Term([EvalFactor("a", env)]),
 Term([EvalFactor("a", env), EvalFactor("b", env)]),
 Term([EvalFactor("np.log(x)", env)])])

Compare to what you get from parsing the above formula:

ModelDesc.from_formula("y ~ a + a:b + np.log(x)", env)

ModelDesc represents an overall formula; it just takes two
lists of Term objects, representing the left-hand side and
the right-hand side. And each Term object just takes a list of
factor objects. In this case our factors are of type
EvalFactor, which evaluates arbitrary Python code, but in
general any object that implements the factor protocol will do – for
details see Model specification for experts and computers.

Of course as a user you never have to actually touch
ModelDesc, Term, or EvalFactor objects by
hand – but it’s useful to know that this lower layer exists in case
you ever want to generate a formula programmatically, and to have an
image in your mind of what a formula really is.

The formula language

Now let’s talk about exactly how those magic formula strings are
processed.

Since a term is nothing but a set of factors, and a model is nothing
but two sets of terms, you can write any Patsy model just using
: to create interactions, + to join terms together into a set,
and ~ to separate the left-hand side from the right-hand side.
But for convenience, Patsy also understands a number of other
short-hand operators, and evaluates them all using a full-fledged
parser [http://en.wikipedia.org/wiki/Shunting_yard_algorithm]
complete with robust error reporting, etc.

Operators

The built-in binary operators, ordered by precedence, are:

	~
	lowest precedence (binds most loosely)

	+, -
	

	*, /
	

	:
	

	**
	highest precedence (binds most tightly)

Of course, you can override the order of operations using
parentheses. All operations are left-associative (so a - b - c means
the same as (a - b) - c, not a - (b - c)). Their meanings are as
follows:

	~

	Separates the left-hand side and right-hand side of a
formula. Optional. If not present, then the formula is considered to
contain a right-hand side only.

	+

	Takes the set of terms given on the left and the set of terms given
on the right, and returns a set of terms that combines both (i.e.,
it computes a set union). Note that this means that a +
a is just a.

	-

	Takes the set of terms given on the left and removes any terms which
are given on the right (i.e., it computes a set difference).

	*

	a * b is short-hand for a + b + a:b, and is useful for the
common case of wanting to include all interactions between a set of
variables while partitioning their variance between lower- and
higher-order interactions. Standard ANOVA models are of the form
a * b * c *

	/

	This one is a bit quirky. a / b is shorthand for a + a:b,
and is intended to be useful in cases where you want to fit a
standard sort of ANOVA model, but b is nested within a, so
a*b doesn’t make sense. So far so good. Also, if you have
multiple terms on the right, then the obvious thing happens: a /
(b + c) is equivalent to a + a:b + a:c (/ is rightward
distributive [https://en.wikipedia.org/wiki/Distributive_property] over
+). But, if you have multiple terms on the left, then there is
a surprising special case: (a + b)/c is equivalent to a + b +
a:b:c (and note that this is different from what you’d get out of
a/c + b/c – / is not leftward distributive over
+). Again, this is motivated by the idea of using this for
nested variables. It doesn’t make sense for c to be nested
within both a and b separately, unless b is itself
nested in a – but if that were true, then you’d write a/b/c
instead. So if we see (a + b)/c, we decide that a and b
must be independent factors, but that c is nested within each
combination of levels of a and b, which is what a:b:c
gives us. If this is confusing, then my apologies... S has been
working this way for >20 years, so it’s a bit late to change it
now.

	:

	This takes two sets of terms, and computes the interaction between
each term on the left and each term on the right. So, for example,
(a + b):(c + d) is the same as a:c + a:d + b:c +
b:d. Calculating the interaction between two terms is also a kind
of set union operation, but : takes the union of factors within
two terms, while + takes the union of two sets of terms. Note that
this means that a:a is just a, and (a:b):(a:c) is the same as
a:b:c.

	**

	This takes a set of terms on the left, and an integer n on the
right, and computes the * of that set of terms with itself n
times. This is useful if you want to compute all interactions up to
order n, but no further. Example:

(a + b + c + d) ** 3

is expanded to:

(a + b + c + d) * (a + b + c + d) * (a + b + c + d)

Note that an equivalent way to write this particular expression
would be:

a*b*c*d - a:b:c:d

(Exercise: why?)

The parser also understands unary + and -, though they aren’t very
useful. + is a no-op, and - can only be used in the forms -1
(which means the same as 0) and -0 (which means the same as
1). See below for more on 0 and
1.

Factors and terms

So that explains how the operators work – the verbs in the formula
language – but what about the nouns, the terms like y and
np.log(x) that are actually picking out bits of your data?

Individual factors are allowed to be arbitrary Python code. Scanning
arbitrary Python code can be quite complicated, but Patsy uses the
official Python tokenizer that’s built into the standard library, so
it’s able to do it robustly. There is still a bit of a problem,
though, since Patsy operators like + are also valid Python
operators. When we see a +, how do we know which interpretation to
use?

The answer is that a Python factor begins whenever we see a token
which

	is not a Patsy operator listed in that table up above, and

	is not a parentheses

And then the factor ends whenever we see a token which

	is a Patsy operator listed in that table up above, and

	it not enclosed in any kind of parentheses (where “any kind”
includes regular, square, and curly bracket varieties)

This will be clearer with an example:

f(x1 + x2) + x3

First, we see f, which is not an operator or a parentheses, so we
know this string begins with a Python-defined factor. Then we keep
reading from there. The next Patsy operator we see is the + in
x1 + x2... but since at this point we have seen the opening (
but not the closing), we know that we’re inside parentheses and
ignore it. Eventually we come to the second +, and by this time we
have seen the closing parentheses, so we know that this is the end of
the first factor and we interpret the + as a Patsy operator.

One side-effect of this is that if you do want to perform some
arithmetic inside your formula object, you can hide it from the
Patsy parser by putting it inside a function call. To make this
more convenient, Patsy provides a builtin function I()
that simply returns its input. (Hence the name: it’s the Identity
function.) This means you can use I(x1 + x2) inside a formula to
represent the sum of x1 and x2.

Note

The above plays a bit fast-and-loose with the distinction
between factors and terms. If you want to get more technical, then
given something like a:b, what’s happening is first that we
create a factor a and then we package it up into a
single-factor term. And then we create a factor b, and we
package it up into a single-factor term. And then we evaluate the
:, and compute the interaction between these two terms. When
we encounter embedded Python code, it’s always converted straight
to a single-factor term before doing anything else.

Intercept handling

There are two special things about how intercept terms are handled
inside the formula parser.

First, since an intercept term is an interaction of zero factors, we
have no way to write it down using the parts of the language described
so far. Therefore, as a special case, the string 1 is taken to
represent the intercept term.

Second, since intercept terms are almost always wanted and remembering
to include them by hand all the time is quite tedious, they are always
included by default in the right-hand side of any formula. The way
this is implemented is exactly as if there is an invisible 1 +
inserted at the beginning of every right-hand side.

Of course, if you don’t want an intercept, you can remove it again
just like any other unwanted term, using the - operator. The only
thing that’s special about the 1 + is that it’s invisible;
otherwise it acts just like any other term. This formula has an
intercept:

y ~ x

because it is processed like y ~ 1 + x.

This formula does not have an intercept:

y ~ x - 1

because it is processed like y ~ 1 + x - 1.

Of course if you want to be really explicit you can mention the
intercept explicitly:

y ~ 1 + x

Once the invisible 1 + is added, this formula is processed like
y ~ 1 + 1 + x, and as you’ll recall from the definition of +
above, adding the same term twice produces the same result as adding
it just once.

For compatibility with S and R, we also allow the magic terms 0 and
-1 which represent the “anti-intercept”. Adding one of these terms
has exactly the same effect as subtracting the intercept term, and
subtracting one of these terms has exactly the same effect as adding
the intercept term. That means that all of these formulas are
equivalent:

y ~ x - 1
y ~ x + -1
y ~ -1 + x
y ~ 0 + x
y ~ x - (-0)

Explore!

The formula language is actually fairly simple once you get the hang
of it, but if you’re ever in doubt as to what some construction means,
you can always ask Patsy how it expands.

Here’s some code to try out at the Python prompt to get started:

from patsy import EvalEnvironment, ModelDesc
This captures the current Python environment. If a factor refers
to a variable that doesn't exist in the data (like np.log) then it
will be looked for here.
env = EvalEnvironment.capture()
ModelDesc.from_formula("y ~ x", env)
ModelDesc.from_formula("y ~ x + x + x", env)
ModelDesc.from_formula("y ~ -1 + x", env)
ModelDesc.from_formula("~ -1", env)
ModelDesc.from_formula("y ~ a:b", env)
ModelDesc.from_formula("y ~ a*b", env)
ModelDesc.from_formula("y ~ (a + b + c + d) ** 2", env)
ModelDesc.from_formula("y ~ (a + b)/(c + d)", env)
ModelDesc.from_formula("np.log(x1 + x2) "
 "+ (x + {6: x3, 8 + 1: x4}[3 * i])", env)

Sometimes it might be easier to read if you put the processed formula
back into formula notation using ModelDesc.describe():

desc = ModelDesc.from_formula("y ~ (a + b + c + d) ** 2", env)
desc.describe()

From terms to matrices

So at this point, you hopefully understand how a string is parsed into
the ModelDesc structure shown in the figure at the top of
this page. And if you like you can also produce such structures
directly without going through the formula parser (see
Model specification for experts and computers). But these terms and factors
objects are still a fairly high-level, symbolic representation of a
model. Now we’ll talk about how they get converted into actual
matrices with numbers in.

There are two core operations here. The first takes a list of
Term objects (a termlist) and some data, and produces a
DesignMatrixBuilder. The second takes a
DesignMatrixBuilder and some data, and produces a design
matrix. In practice, these operations are implemented by
design_matrix_builders() and build_design_matrices(),
respectively, and each of these functions is “vectorized” to process
an arbitrary number of matrices together in a single operation. But
we’ll ignore that for now, and just focus on what happens to a single
termlist.

First, each individual factor is given a chance to set up any
Stateful transforms it may have, and then is evaluated on the
data, to determine:

	Whether it is categorical or numerical

	If it is categorical, what levels it has

	If it is numerical, how many columns it has.

Next, we sort terms based on the factors they contain. This is done by
dividing terms into groups based on what combination of numerical
factors each one contains. The group of terms that have no numerical
factors comes first, then the rest of the groups in the order they are
first mentioned within the term list. Then within each group,
lower-order interactions are ordered to come before higher-order
interactions. (Interactions of the same order are left alone.)

Example:

In [1]: data = demo_data("a", "b", "x1", "x2")

In [2]: mat = dmatrix("x1:x2 + a:b + b + x1:a:b + a + x2:a:x1", data)

In [3]: mat.design_info.term_names
Out[3]: ['Intercept', 'b', 'a', 'a:b', 'x1:x2', 'x2:a:x1', 'x1:a:b']

The non-numerical terms are Intercept, b, a, a:b and they come
first, sorted from lower-order to higher-order. b comes before a
because it did in the original formula. Next come the terms that
involved x1 and x2 together, and x1:x2 comes before x2:a:x1
because it is a lower-order term. Finally comes the sole term
involving x1 without x2.

Note

These ordering rules may seem a bit arbitrary, but will make more
sense after our discussion of redundancy below. Basically the
motivation is that terms like b and a represent overlapping
vector spaces, which means that the presence of one will affect how
the other is coded. So, we group to them together, to make
these relationships easier to see in the final analysis. And, a
term like b represents a sub-space of a term like a:b, so if
you’re including both terms in your model you presumably want the
variance represented by b to be partitioned out separately from
the overall a:b term, and for that to happen, b should come
first in the final model.

After sorting the terms, we determine appropriate coding schemes for
categorical factors, as described in the next section. And that’s it
– we now know exactly how to produce this design matrix, and
design_matrix_builders() packages this knowledge up into a
DesignMatrixBuilder and returns it. To get the design matrix
itself, we then use build_design_matrices().

Redundancy and categorical factors

Here’s the basic idea about how Patsy codes categorical factors: each
term that’s included means that we want our outcome variable to be
able to vary in a certain way – for example, the a:b in y ~ a:b
means that we want our model to be flexible enough to assign y a
different value for every possible combination of a and b
values. So what Patsy does is build up a design matrix incrementally
by working from left to right in the sorted term list, and for each
term it adds just the right columns needed to make sure that the model
will be flexible enough to include the kind of variation this term
represents, while keeping the overall design matrix full rank. The
result is that the columns associated with each term always represent
the additional flexibility that the models gains by adding that
term, on top of the terms to its left. Numerical factors are assumed
not to be redundant with each other, and are always included “as is”;
categorical factors and interactions might be redundant, so Patsy
chooses either full-rank or reduced-rank contrast coding for each one
to keep the overall design matrix at full rank.

Note

We’re only worried here about “structural redundancies”, those
which occur inevitably no matter what the particular values occur
in your data set. If you enter two different factors x1 and x2,
but set them to be numerically equal, then Patsy will indeed
produce a design matrix that isn’t full rank. Avoiding that is your
problem.

Okay, now for the more the more detailed explanation. Each term
represents a certain space of linear combinations of column vectors:

	A numerical factor represents the vector space spanned by its
columns.

	A categorical factor represents the vector space spanned by the
columns you get if you apply “dummy coding”.

	An interaction between two factors represents the vector space
spanned by the element-wise products between vectors in the first
factor’s space with vectors in the second factor’s space. For
example, if [image: c_{1a}] and [image: c_{1b}] are two columns that
form a basis for the vector space represented by factor [image: f_1],
and likewise [image: c_{2a}] and [image: c_{2b}] are a basis for the
vector space represented by [image: f_2], then [image: c_{1a} * c_{2a}], [image: c_{1b} * c_{2a}], [image: c_{1a} * c_{2b}],
[image: c_{1b}*c_{2b}] is a basis for the vector space represented
by [image: f_1:f_2]. Here the [image: *] operator represents
elementwise multiplication, like numpy *. (Exercise: show that
the choice of basis does not matter.)

	The empty interaction represents the space spanned by the identity
element for elementwise multiplication, i.e., the all-ones
“intercept” term.

So suppose that a is a categorical factor with two levels a1 and
a2, and b is a categorical factor with two levels b1 and b1.
Then:

	a represents the space spanned by two vectors: one that has a 1
everywhere that a == "a1", and a zero everywhere else, and
another that’s similar but for a == "a2". (dummy coding)

	b works similarly

	and a:b represents the space spanned by four vectors: one that
has a 1 everywhere that has a == "a1" and b == "b1", another
that has a 1 everywhere that has a1 == "a2" and b == "b1",
etc. So if you are familiar with ANOVA terminology, then these are
not the kinds of interactions you are expecting! They represent a
more fundamental idea, that when we write:

y ~ a:b

we mean that the value of y can vary depending on every possible
combination of a and b.

[image: _images/term-containment.png]

Notice that this means that the space spanned by the intercept term is
always a vector subspace of the spaces spanned by a and b, and
these subspaces in turn are always subspaces of the space spanned by
a:b. (Another way to say this is that a and b are “marginal to”
a:b.) The diagram on the right shows these relationships
graphically. This reflects the intuition that allowing y to depend
on every combination of a and b gives you a more flexible model
than allowing it to vary based on just a or just b.

So what this means is that once you have a:b in your model, adding
a or b or the intercept term won’t actually give you any
additional flexibility; the most they can do is to create redundancies
that your linear algebra package will have to somehow detect and
remove later. These two models are identical in terms of how flexible
they are:

y ~ 0 + a:b
y ~ 1 + a + b + a:b

And, indeed, we can check that the matrices that Patsy generates
for these two formulas have identical column spans:

In [1]: data = demo_data("a", "b", "y")

In [2]: mat1 = dmatrices("y ~ 0 + a:b", data)[1]

In [3]: mat2 = dmatrices("y ~ 1 + a + b + a:b", data)[1]

In [4]: np.linalg.matrix_rank(mat1)
Out[4]: 4

In [5]: np.linalg.matrix_rank(mat2)
Out[5]: 4

In [6]: np.linalg.matrix_rank(np.column_stack((mat1, mat2)))
Out[6]: 4

But, of course, their actual contents is different:

In [1]: mat1
Out[1]:
DesignMatrix with shape (8, 4)
 a[a1]:b[b1] a[a2]:b[b1] a[a1]:b[b2] a[a2]:b[b2]
 1 0 0 0
 0 0 1 0
 0 1 0 0
 0 0 0 1
 1 0 0 0
 0 0 1 0
 0 1 0 0
 0 0 0 1
 Terms:
 'a:b' (columns 0:4)

In [2]: mat2
Out[2]:
DesignMatrix with shape (8, 4)
 Intercept a[T.a2] b[T.b2] a[T.a2]:b[T.b2]
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 1
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 1
 Terms:
 'Intercept' (column 0)
 'a' (column 1)
 'b' (column 2)
 'a:b' (column 3)

This happens because Patsy is finding ways to avoid creating
redundancy while coding each term. To understand how this works, it’s
useful to draw some pictures. Patsy has two general strategies for
coding a categorical factor with [image: n] levels. The first is to use
a full-rank encoding with [image: n] columns. Here are some pictures of
this style of coding:

[image: 1] [image: a] [image: b] [image: a:b]

Obviously if we lay these images on top of each other, they’ll
overlap, which corresponds to their overlap when considered as vector
spaces. If we try just putting them all into the same model, we get
mud:

[image: _images/redundancy-1-a-b-ab.png]
Naive 1 + a + b + a:b

Patsy avoids this by using its second strategy: coding an [image: n]
level factor in [image: n - 1] columns which, critically, do not span
the intercept. We’ll call this style of coding reduced-rank, and use
notation like a- to refer to factors coded this way.

Note

Each of the categorical coding schemes included in patsy
come in both full-rank and reduced-rank flavours. If you ask for,
say, Poly coding, then this is the mechanism used to
decide whether you get full- or reduced-rank Poly coding.

For coding a there are two options:

[image: a] [image: a-]

And likewise for b:

[image: b] [image: b-]

When it comes to a:b, things get more interesting: it can choose
whether to use a full- or reduced-rank encoding separately for each
factor, leading to four choices overall:

[image: a:b] [image: a-:b] [image: a:b-] [image: a-:b-]

So when interpreting a formula like 1 + a + b + a:b, Patsy’s
job is to pick and choose from the above pieces and then assemble them
together like a jigsaw puzzle.

Let’s walk through the formula 1 + a + b + a:b to see how this
works. First it encodes the intercept:

[image: _images/redundancy-1.png]
In [1]: dmatrices("y ~ 1", data)[1]
Out[1]:
DesignMatrix with shape (8, 1)
 Intercept
 1
 1
 1
 1
 1
 1
 1
 1
 Terms:
 'Intercept' (column 0)

Then it adds the a term. It has two choices, either the full-rank
coding or the reduced rank a- coding. Using the full-rank coding
would overlap with the already-existing intercept term, though, so it
chooses the reduced rank coding:

[image: _images/redundancy-1-ar.png]
In [1]: dmatrices("y ~ 1 + a", data)[1]
Out[1]:
DesignMatrix with shape (8, 2)
 Intercept a[T.a2]
 1 0
 1 0
 1 1
 1 1
 1 0
 1 0
 1 1
 1 1
 Terms:
 'Intercept' (column 0)
 'a' (column 1)

The b term is treated similarly:

[image: _images/redundancy-1-ar-br.png]
In [1]: dmatrices("y ~ 1 + a + b", data)[1]
Out[1]:
DesignMatrix with shape (8, 3)
 Intercept a[T.a2] b[T.b2]
 1 0 0
 1 0 1
 1 1 0
 1 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1
 Terms:
 'Intercept' (column 0)
 'a' (column 1)
 'b' (column 2)

And finally, there are four options for the a:b term, but only one
of them will fit without creating overlap:

[image: _images/redundancy-1-ar-br-arbr.png]
In [1]: dmatrices("y ~ 1 + a + b + a:b", data)[1]
Out[1]:
DesignMatrix with shape (8, 4)
 Intercept a[T.a2] b[T.b2] a[T.a2]:b[T.b2]
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 1
 1 0 0 0
 1 0 1 0
 1 1 0 0
 1 1 1 1
 Terms:
 'Intercept' (column 0)
 'a' (column 1)
 'b' (column 2)
 'a:b' (column 3)

Patsy tries to use the fewest pieces possible to cover the
space. For instance, in this formula, the a:b term is able to fill
the remaining space by using a single piece:

[image: _images/redundancy-1-br-arb.png]
In [1]: dmatrices("y ~ 1 + b + a:b", data)[1]
Out[1]:
DesignMatrix with shape (8, 4)
 Intercept b[T.b2] a[T.a2]:b[b1] a[T.a2]:b[b2]
 1 0 0 0
 1 1 0 0
 1 0 1 0
 1 1 0 1
 1 0 0 0
 1 1 0 0
 1 0 1 0
 1 1 0 1
 Terms:
 'Intercept' (column 0)
 'b' (column 1)
 'a:b' (columns 2:4)

However, this is not always possible. In such cases, Patsy will
assemble multiple pieces to code a single term [1], e.g.:

[image: _images/redundancy-1-br-arb-combined.png]
In [1]: dmatrices("y ~ 1 + a:b", data)[1]
Out[1]:
DesignMatrix with shape (8, 4)
 Intercept b[T.b2] a[T.a2]:b[b1] a[T.a2]:b[b2]
 1 0 0 0
 1 1 0 0
 1 0 1 0
 1 1 0 1
 1 0 0 0
 1 1 0 0
 1 0 1 0
 1 1 0 1
 Terms:
 'Intercept' (column 0)
 'a:b' (columns 1:4)

Notice that the matrix entries and column names here are identical to
those produced by the previous example, but the association between
terms and columns shown at the bottom is different.

In all of these cases, the final model spans the same space; a:b is
included in the formula, and therefore the final matrix must fill in
the full a:b square. By including different combinations of lower-order
interactions, we can control how this overall variance is
partitioned into distinct terms.

Exercise: create the similar diagram for a formula that includes a
three-way interaction, like 1 + a + a:b + a:b:c or 1 +
a:b:c. Hint: it’s a cube. Then, send us your diagram for
inclusion in this documentation [2].

Finally, we’ve so far only discussed purely categorical
interactions. Bringing numerical interactions into the mix doesn’t
make things much more complicated. Each combination of numerical
factors is considered to be distinct from all other combinations, so
we divide all of our terms into groups based on which numerical
factors they contain (just like we do when sorting terms, as described
above), and then within each group we separately apply the algorithm
described here to the categorical parts of each term.

Technical details

The actual algorithm Patsy uses to produce the above coding is very
simple. Within the group of terms associated with each combination of
numerical factors, it works from left to right. For each term it
encounters, it breaks the categorical part of the interaction down
into minimal pieces, e.g. a:b is replaced by 1 + (a-) + (b-) +
(a-):(b-):

[image: a:b] [image: arrow] [image: 1 a- b- a-:b-]

(Formally speaking, these “minimal pieces” consist of the set of all
subsets of the original interaction.) Then, any of the minimal pieces
which were used by a previous term within this group are deleted,
since they are redundant:

[image: 1 a- b- a-:b-] [image: arrow] [image: a- a-:b-]

and then we greedily recombine the pieces that are left
by repeatedly merging adjacent pieces according to the rule ANYTHING
+ ANYTHING : FACTOR- = ANYTHING : FACTOR:

[image: a- a-:b-] [image: arrow] [image: a-:b]

Exercise: Prove formally that the space spanned by ANYTHING +
ANYTHING : FACTOR- is identical to the space spanned by ANYTHING :
FACTOR.

Exercise: Either show that the greedy algorithm here is produces
optimal encodings in some sense (e.g., smallest number of pieces
used), or else find a better algorithm. (Extra credit: implement
your algorithm and submit a pull request [3].)

Is this algorithm correct? A full formal proof would be too tedious
for this reference manual, but here’s a sketch of the analysis.

Recall that our goal is to maintain two invariants: the design matrix
column space should include the space associated with each term, and
should avoid “structural redundancy”, i.e. it should be full rank on
at least some data sets. It’s easy to see the above algorithm will
never “lose” columns, since the only time it eliminates a subspace is
when it has previously processed that exact subspace within the same
design. But will it always detect all the redundancies that are
present?

That is guaranteed by the following theorem:

Theorem: Let two sets of factors, [image: F = {f_1, \dots, f_n}] and
[image: G = {g_1, \dots, g_m}] be given, and let [image: F = F_{\text{num}} \cup F_{\text{categ}}] be the numerical and categorical
factors, respectively (and similarly for [image: G = G_{\text{num}} \cup G_{\text{categ}}]. Then the space represented by the interaction
[image: f_1 : \cdots : f_n] has a non-trivial intersection with the
space represented by the interaction [image: g_1 : \cdots : g_m]
whenever:

	[image: F_{\text{num}} = G_{\text{num}}], and

	[image: F_{\text{categ}} \cap G_{\text{categ}} \neq \emptyset]

And, furthermore, whenever this condition does not hold, then there
exists some assignment of values to the factors for which the
associated vector spaces have only a trivial intersection.

Exercise: Prove it.

Exercise: Show that given a sufficient number of rows, the set of
factor assignments on which [image: f_1 : \cdots : f_n] represents a
subspace of [image: g_1 : \cdots : g_n] without the above conditions
being satisfied is actually a zero set.

Corollary: Patsy’s strategy of dividing into groups by numerical
factors, and then comparing all subsets of the remaining categorical
factors, allows it to precisely identify and avoid structural
redundancies.

Footnotes

	[1]	This is one of the places where Patsy improves on R,
which produces incorrect output in this case (see
Differences between R and Patsy formulas).

	[2]	Yes, I’m lazy. And shameless.

	[3]	Yes, still shameless.

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

Coding categorical data

Patsy allows great flexibility in how categorical data is coded,
via the function C(). C() marks some data as being
categorical (including data which would not automatically be treated
as categorical, such as a column of integers), while also optionally
setting the preferred coding scheme and level ordering.

Let’s get some categorical data to work with:

In [1]: from patsy import dmatrix, demo_data, ContrastMatrix, Poly

In [2]: data = demo_data("a", nlevels=3)

In [3]: data
Out[3]: {'a': ['a1', 'a2', 'a3', 'a1', 'a2', 'a3']}

As you know, simply giving Patsy a categorical variable causes it
to be coded using the default Treatment coding
scheme. (Strings and booleans are treated as categorical by default.)

In [1]: dmatrix("a", data)
Out[1]:
DesignMatrix with shape (6, 3)
 Intercept a[T.a2] a[T.a3]
 1 0 0
 1 1 0
 1 0 1
 1 0 0
 1 1 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 'a' (columns 1:3)

We can also alter the level ordering, which is useful for, e.g.,
Diff coding:

In [1]: l = ["a3", "a2", "a1"]

In [2]: dmatrix("C(a, levels=l)", data)
Out[2]:
DesignMatrix with shape (6, 3)
 Intercept C(a, levels=l)[T.a2] C(a, levels=l)[T.a1]
 1 0 1
 1 1 0
 1 0 0
 1 0 1
 1 1 0
 1 0 0
 Terms:
 'Intercept' (column 0)
 'C(a, levels=l)' (columns 1:3)

But the default coding is just that – a default. The easiest
alternative is to use one of the other built-in coding schemes, like
orthogonal polynomial coding:

In [1]: dmatrix("C(a, Poly)", data)
Out[1]:
DesignMatrix with shape (6, 3)
 Intercept C(a, Poly).Linear C(a, Poly).Quadratic
 1 -0.70711 0.40825
 1 -0.00000 -0.81650
 1 0.70711 0.40825
 1 -0.70711 0.40825
 1 -0.00000 -0.81650
 1 0.70711 0.40825
 Terms:
 'Intercept' (column 0)
 'C(a, Poly)' (columns 1:3)

There are a number of built-in coding schemes; for details you can
check the API reference. But we aren’t
restricted to those. We can also provide a custom contrast matrix,
which allows us to produce all kinds of strange designs:

In [1]: contrast = [[1, 2], [3, 4], [5, 6]]

In [2]: dmatrix("C(a, contrast)", data)
Out[2]:
DesignMatrix with shape (6, 3)
 Intercept C(a, contrast)[custom0] C(a, contrast)[custom1]
 1 1 2
 1 3 4
 1 5 6
 1 1 2
 1 3 4
 1 5 6
 Terms:
 'Intercept' (column 0)
 'C(a, contrast)' (columns 1:3)

In [3]: dmatrix("C(a, [[1], [2], [-4]])", data)
Out[3]:
DesignMatrix with shape (6, 2)
 Intercept C(a, [[1], [2], [-4]])[custom0]
 1 1
 1 2
 1 -4
 1 1
 1 2
 1 -4
 Terms:
 'Intercept' (column 0)
 'C(a, [[1], [2], [-4]])' (column 1)

Hmm, those [custom0], [custom1] names that Patsy
auto-generated for us are a bit ugly looking. We can attach names to
our contrast matrix by creating a ContrastMatrix object, and
make things prettier:

In [1]: contrast_mat = ContrastMatrix(contrast, ["[pretty0]", "[pretty1]"])

In [2]: dmatrix("C(a, contrast_mat)", data)
Out[2]:
DesignMatrix with shape (6, 3)
 Intercept C(a, contrast_mat)[pretty0] C(a, contrast_mat)[pretty1]
 1 1 2
 1 3 4
 1 5 6
 1 1 2
 1 3 4
 1 5 6
 Terms:
 'Intercept' (column 0)
 'C(a, contrast_mat)' (columns 1:3)

And, finally, if we want to get really fancy, we can also define our
own “smart” coding schemes like Poly. Just define a class
that has two methods, code_with_intercept() and
code_without_intercept(). They have identical signatures, taking
a list of levels as their argument and returning a
ContrastMatrix. Patsy will automatically choose the
appropriate method to call to produce a full-rank design matrix
without redundancy; see Redundancy and categorical factors for the full details on how
Patsy makes this decision.

As an example, here’s a simplified version of the built-in
Treatment coding object:

import numpy as np

class MyTreat(object):
 def __init__(self, reference=0):
 self.reference = reference

 def code_with_intercept(self, levels):
 return ContrastMatrix(np.eye(len(levels)),
 ["[My.%s]" % (level,) for level in levels])

 def code_without_intercept(self, levels):
 eye = np.eye(len(levels) - 1)
 contrasts = np.vstack((eye[:self.reference, :],
 np.zeros((1, len(levels) - 1)),
 eye[self.reference:, :]))
 suffixes = ["[MyT.%s]" % (level,) for level in
 levels[:self.reference] + levels[self.reference + 1:]]
 return ContrastMatrix(contrasts, suffixes)

And it can now be used just like the built-in methods:

Full rank:
In [1]: dmatrix("0 + C(a, MyTreat)", data)
Out[1]:
DesignMatrix with shape (6, 3)
 C(a, MyTreat)[My.a1] C(a, MyTreat)[My.a2] C(a, MyTreat)[My.a3]
 1 0 0
 0 1 0
 0 0 1
 1 0 0
 0 1 0
 0 0 1
 Terms:
 'C(a, MyTreat)' (columns 0:3)

Reduced rank:
In [2]: dmatrix("C(a, MyTreat)", data)
Out[2]:
DesignMatrix with shape (6, 3)
 Intercept C(a, MyTreat)[MyT.a2] C(a, MyTreat)[MyT.a3]
 1 0 0
 1 1 0
 1 0 1
 1 0 0
 1 1 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 'C(a, MyTreat)' (columns 1:3)

With argument:
In [3]: dmatrix("C(a, MyTreat(2))", data)
Out[3]:
DesignMatrix with shape (6, 3)
 Intercept C(a, MyTreat(2))[MyT.a1] C(a, MyTreat(2))[MyT.a2]
 1 1 0
 1 0 1
 1 0 0
 1 1 0
 1 0 1
 1 0 0
 Terms:
 'Intercept' (column 0)
 'C(a, MyTreat(2))' (columns 1:3)

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

Stateful transforms

There’s a subtle problem that sometimes bites people when working with
formulas. Suppose that I have some numerical data called x, and I
would like to center it before fitting. The obvious way would be to
write:

y ~ I(x - np.mean(x)) # BROKEN! Don't do this!

or, even better we could package it up into a function:

In [1]: def naive_center(x): # BROKEN! don't use!
 ...: x = np.asarray(x)
 ...: return x - np.mean(x)
 ...:

and then write our formula like:

y ~ naive_center(x)

Why is this a bad idea? Let’s set up an example.

In [1]: import numpy as np

In [2]: from patsy import dmatrix, build_design_matrices, incr_dbuilder

In [3]: data = {"x": [1, 2, 3, 4]}

Now we can build a design matrix and see what we get:

In [1]: mat = dmatrix("naive_center(x)", data)

In [2]: mat
 Out[2]:
DesignMatrix with shape (4, 2)
 Intercept naive_center(x)
 1 -1.5
 1 -0.5
 1 0.5
 1 1.5
 Terms:
 'Intercept' (column 0)
 'naive_center(x)' (column 1)

Those numbers look correct, and in fact they are correct. If all we’re
going to do with this model is call dmatrix() once, then
everything is fine – which is what makes this problem so insidious.

Often we want to do more with a model than this. For instance, we
might find some new data, and want to feed it into our model to make
predictions. To do this, though, we first need to reapply the same
transformation, like so:

In [1]: new_data = {"x": [5, 6, 7, 8]}

Broken!
In [2]: build_design_matrices([mat.design_info.builder], new_data)[0]
 Out[2]:
DesignMatrix with shape (4, 2)
 Intercept naive_center(x)
 1 -1.5
 1 -0.5
 1 0.5
 1 1.5
 Terms:
 'Intercept' (column 0)
 'naive_center(x)' (column 1)

So it’s clear what’s happened here – Patsy has centered the new
data, just like it centered the old data. But if you think about what
this means statistically, it makes no sense. According to this, the
new data point where x is 5 will behave exactly like the old data
point where x is 1, because they both produce the same input to the
actual model.

The problem is what it means to apply “the same transformation”. Here,
what we really want to do is to subtract the mean of the original
data from the new data.

Patsy’s solution is called a stateful transform. These look like
ordinary functions, but they perform a bit of magic to remember the
state of the original data, and use it in transforming new data.
Several useful stateful transforms are included out of the box,
including one called center().

Using center() instead of naive_center() produces the same
correct result for our original matrix. It’s used in exactly the same
way:

In [1]: fixed_mat = dmatrix("center(x)", data)

In [2]: fixed_mat
 Out[2]:
DesignMatrix with shape (4, 2)
 Intercept center(x)
 1 -1.5
 1 -0.5
 1 0.5
 1 1.5
 Terms:
 'Intercept' (column 0)
 'center(x)' (column 1)

But if we then feed in our new data, we also get out the correct result:

Correct!
In [1]: build_design_matrices([fixed_mat.design_info.builder], new_data)[0]
 Out[1]:
DesignMatrix with shape (4, 2)
 Intercept center(x)
 1 2.5
 1 3.5
 1 4.5
 1 5.5
 Terms:
 'Intercept' (column 0)
 'center(x)' (column 1)

Another situation where we need some stateful transform magic is when
we are working with data that is too large to fit into memory at
once. To handle such cases, Patsy allows you to set up a design
matrix while working our way incrementally through the data. But if we
use naive_center() when building a matrix incrementally, then it
centers each chunk of data, not the data as a whole. (Of course,
depending on how your data is distributed, this might end up being
just similar enough for you to miss the problem until it’s too late.)

In [1]: data_chunked = [{"x": data["x"][:2]},
 ...: {"x": data["x"][2:]}]
 ...:

In [2]: builder = incr_dbuilder("naive_center(x)", lambda: iter(data_chunked))

Broken!
In [3]: np.row_stack([build_design_matrices([builder], chunk)[0]
 ...: for chunk in data_chunked])
 ...:
 Out[3]:
array([[1. , -0.5],
 [1. , 0.5],
 [1. , -0.5],
 [1. , 0.5]])

But if we use the proper stateful transform, this just works:

In [1]: builder = incr_dbuilder("center(x)", lambda: iter(data_chunked))

Correct!
In [2]: np.row_stack([build_design_matrices([builder], chunk)[0]
 ...: for chunk in data_chunked])
 ...:
 Out[2]:
array([[1. , -1.5],
 [1. , -0.5],
 [1. , 0.5],
 [1. , 1.5]])

Note

Under the hood, the way this works is that incr_dbuilder()
iterates through the data once to calculate the mean, and then we
use build_design_matrices() to iterate through it a second
time creating our design matrix. While taking two passes through a
large data set may be slow, there’s really no other way to
accomplish what the user asked for. The good news is that Patsy is
smart enough to make only the minimum number of passes
necessary. For example, in our example with naive_center()
above, incr_dbuilder() would not have done a full pass
through the data at all. And if you have multiple stateful
transforms in the same formula, then Patsy will process them in
parallel in a single pass.

And, of course, we can use the resulting builder for prediction as
well:

Correct!
In [1]: build_design_matrices([builder], new_data)[0]
 Out[1]:
DesignMatrix with shape (4, 2)
 Intercept center(x)
 1 2.5
 1 3.5
 1 4.5
 1 5.5
 Terms:
 'Intercept' (column 0)
 'center(x)' (column 1)

In fact, Patsy’s stateful transform handling is clever enough that
it can support arbitrary mixing of stateful transforms with other
Python code. E.g., if center() and spline() were both
stateful transforms, then even a silly a formula like this will be
handled 100% correctly:

y ~ I(spline(center(x1)) + center(x2))

However, it isn’t perfect – there are two things you have to be
careful of. Let’s put them in red:

Warning

If you are unwise enough to ignore this section, write a function
like naive_center above, and use it in a formula, then Patsy will
not notice. If you use that formula with incr_dbuilders() or
for predictions, then you will just silently get the wrong
results. We have a plan to detect such cases, but it isn’t
implemented yet (and in any case can never be 100% reliable). So be
careful!

Warning

Even if you do use a “real” stateful transform like center()
or standardize(), still have to make sure that Patsy can
“see” that you are using such a transform. Currently the rule is
that you must access the stateful transform function using a
simple, bare variable reference, without any dots or other
lookups:

dmatrix("y ~ center(x)", data) # okay
asdf = patsy.center
dmatrix("y ~ asdf(x)", data) # okay
dmatrix("y ~ patsy.center(x)", data) # BROKEN! DON'T DO THIS!
funcs = {"center": patsy.center}
dmatrix("y ~ funcs['center'](x)", data) # BROKEN! DON'T DO THIS!

Builtin stateful transforms

There are a number of builtin stateful transforms beyond
center(); see stateful transforms in the API reference for a complete list.

Defining a stateful transform

You can also easily define your own stateful transforms. The first
step is to define a class which fulfills the stateful transform
protocol. The lifecycle of a stateful transform object is as follows:

	An instance of your type will be constructed.

	memorize_chunk() will be called one or more times.

	memorize_finish() will be called once.

	transform() will be called one or more times, on either the
same or different data to what was initially passed to
memorize_chunk(). You can trust that any non-data arguments
will be identical between calls to memorize_chunk() and
transform().

And here are the methods and call signatures you need to define:

	
class patsy.stateful_transform_protocol

	
	
__init__()

	It must be possible to create an instance of the class by calling
the constructor with no arguments.

	
memorize_chunk(*args, **kwargs)

	Update any internal state, based on the data passed into
memorize_chunk.

	
memorize_finish()

	Do any housekeeping you want to do between the last call to
memorize_chunk() and the first call to
transform(). For example, if you are computing some summary
statistic that cannot be done incrementally, then your
memorize_chunk() method might just store the data that’s
passed in, and then memorize_finish() could compute the
summary statistic and delete the stored data to free up the
associated memory.

	
transform(*args, **kwargs)

	This method should transform the input data passed to it. It
should be deterministic, and it should be “point-wise”, in the
sense that when passed an array it performs an independent
transformation on each data point that is not affected by any
other data points passed to transform().

Then once you have created your class, pass it to
stateful_transform() to create a callable stateful transform
object suitable for use inside or outside formulas.

Here’s a simple example of how you might implement a working version
of center() (though it’s less robust and featureful than the
real builtin):

class MyExampleCenter(object):
 def __init__(self):
 self._total = 0
 self._count = 0
 self._mean = None

 def memorize_chunk(self, x):
 self._total += np.sum(x)
 self._count += len(x)

 def memorize_finish(self):
 self._mean = self.total * 1. / self._count

 def transform(self, x):
 return x - self._mean

my_example_center = patsy.stateful_transform(MyExampleCenter)
print(my_example_center(np.array([1, 2, 3])))

But of course, if you come up with any useful ones, please let us know
so we can incorporate them into patsy itself!

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

Model specification for experts and computers

While the formula language is great for interactive model-fitting and
exploratory data analysis, there are times when we want a different or
more systematic interface for creating design matrices. If you ever
find yourself writing code that pastes together bits of strings to
create a formula, then stop! And read this chapter.

Our first option, of course, is that we can go ahead and write some
code to construct our design matrices directly, just like we did in
the old days. Since this is supported directly by dmatrix() and
dmatrices(), it also works with any third-party library
functions that use Patsy internally. Just pass in an array_like or
a tuple (y_array_like, X_array_like) in place of the formula.

In [1]: from patsy import dmatrix

In [2]: X = [[1, 10], [1, 20], [1, -2]]

In [3]: dmatrix(X)
Out[3]:
DesignMatrix with shape (3, 2)
 x0 x1
 1 10
 1 20
 1 -2
 Terms:
 'x0' (column 0)
 'x1' (column 1)

By using a DesignMatrix with DesignInfo attached, we
can also specify custom names for our custom matrix (or even term
slices and so forth), so that we still get the nice output and such
that Patsy would otherwise provide:

In [1]: from patsy import DesignMatrix, DesignInfo

In [2]: design_info = DesignInfo(["Intercept!", "Not intercept!"])

In [3]: X_dm = DesignMatrix(X, design_info)

In [4]: dmatrix(X_dm)
Out[4]:
DesignMatrix with shape (3, 2)
 Intercept! Not intercept!
 1 10
 1 20
 1 -2
 Terms:
 'Intercept!' (column 0)
 'Not intercept!' (column 1)

Or if all we want to do is to specify column names, we could also just
use a pandas.DataFrame:

In [1]: import pandas

In [2]: df = pandas.DataFrame([[1, 10], [1, 20], [1, -2]],
 ...: columns=["Intercept!", "Not intercept!"])
 ...:

In [3]: dmatrix(df)
Out[3]:
DesignMatrix with shape (3, 2)
 Intercept! Not intercept!
 1 10
 1 20
 1 -2
 Terms:
 'Intercept!' (column 0)
 'Not intercept!' (column 1)

However, there is also a middle ground between pasting together
strings and going back to putting together design matrices out of
string and baling wire. Patsy has a straightforward Python
interface for representing the result of parsing formulas, and you can
use it directly. This lets you keep Patsy’s normal advantages –
handling of categorical data and interactions, predictions, term
tracking, etc. – while using a nice high-level Python API. An example
of somewhere this might be useful is if, say, you had a GUI with a
tick box next to each variable in your data set, and wanted to
construct a formula containing all the variables that had been
checked, and letting Patsy deal with categorical data handling. Or
this would be the approach you’d take for doing stepwise regression,
where you need to programatically add and remove terms.

Whatever your particular situation, the strategy is this:

	Construct some factor objects (probably using LookupFactor or
EvalFactor

	Put them into some Term objects,

	Put the Term objects into two lists, representing the
left- and right-hand side of your formula,

	And then wrap the whole thing up in a ModelDesc.

(See How formulas work if you need a refresher on what each of these
things are.)

In [1]: import numpy as np

In [2]: from patsy import (ModelDesc, EvalEnvironment, Term, EvalFactor,
 ...: LookupFactor, demo_data, dmatrix)
 ...:

In [3]: data = demo_data("a", "x")

In [4]: env = EvalEnvironment.capture()

LookupFactor takes a dictionary key:
In [5]: a_lookup = LookupFactor("a")

EvalFactor takes arbitrary Python code:
In [6]: x_transform = EvalFactor("np.log(x ** 2)", env)

First argument is empty list for dmatrix; we would need to put
something there if we were calling dmatrices.
In [7]: desc = ModelDesc([],
 ...: [Term([a_lookup]),
 ...: Term([x_transform]),
 ...: Term([a_lookup, x_transform])])
 ...:

Create the matrix (or pass 'desc' to any statistical library
function that uses patsy.dmatrix internally):
In [8]: dmatrix(desc, data)
Out[8]:
DesignMatrix with shape (6, 4)
 a[a1] a[a2] np.log(x ** 2) a[T.a2]:np.log(x ** 2)
 1 0 1.13523 0.00000
 0 1 -1.83180 -1.83180
 1 0 -0.04298 -0.00000
 0 1 1.61375 1.61375
 1 0 1.24926 0.00000
 0 1 -0.04597 -0.04597
 Terms:
 'a' (columns 0:2)
 'np.log(x ** 2)' (column 2)
 'a:np.log(x ** 2)' (column 3)

Notice that no intercept term is included. Implicit intercepts are a
feature of the formula parser, not the underlying represention. If you
want an intercept, include the constant INTERCEPT in your
list of terms (which is just sugar for Term([])).

Note

Another option is to just pass your term lists directly to
design_matrix_builders(), and skip the ModelDesc
entirely – all of the highlevel API functions like dmatrix()
accept DesignMatrixBuilder objects as well as
ModelDesc objects.

Example: say our data has 100 different numerical columns that we want
to include in our design – and we also have a few categorical
variables with a more complex interaction structure. Here’s one
solution:

def add_predictors(base_formula, extra_predictors):
 # Interpret formula in caller's environment:
 env = EvalEnvironment.capture(1)
 desc = ModelDesc.from_formula(base_formula, env)
 # Using LookupFactor here ensures that everything will work correctly even
 # if one of the column names in extra_columns is named like "weight.in.kg"
 # or "sys.exit()" or "LittleBobbyTables()".
 desc.rhs_termlist += [Term([LookupFactor(p)]) for p in extra_predictors]
 return desc

In [1]: extra_predictors = ["x%s" % (i,) for i in range(10)]

In [2]: desc = add_predictors("np.log(y) ~ a*b + c:d", extra_predictors)

In [3]: desc.describe()
Out[3]: 'np.log(y) ~ a + b + a:b + c:d + x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9'

The factor protocol

If LookupFactor and EvalFactor aren’t enough for
you, then you can define your own factor class.

The full interface looks like this:

	
class patsy.factor_protocol

	
	
name()

	This must return a short string describing this factor. It will
be used to create column names, among other things.

	
__eq__(obj)

	
__ne__(obj)

	
__hash__()

	If your factor will ever contain categorical data or
participate in interactions, then it’s important to make sure
you’ve defined __eq__() [http://docs.python.org/reference/datamodel.html#object.__eq__] and
__ne__() [http://docs.python.org/reference/datamodel.html#object.__ne__] and that your type is
hashable [http://docs.python.org/glossary.html#term-hashable]. These methods will determine which factors
Patsy considers equal for purposes of redundancy elimination.

	
memorize_passes_needed(state)

	Return the number of passes through the data that this factor
will need in order to set up any Stateful transforms.

If you don’t want to support stateful transforms, just return
0. In this case, memorize_chunk() and
memorize_finish() will never be called.

state is an (initially) empty dict which is maintained by the
builder machinery, and that we can do whatever we like with. It
will be passed back in to all memorization and evaluation
methods.

	
memorize_chunk(state, which_pass, data)

	Called repeatedly with each ‘chunk’ of data produced by the
data_iter_maker passed to design_matrix_builders().

state is the state dictionary. which_pass will be zero on
the first pass through the data, and eventually reach the
value you returned from memorize_passes_needed(), minus
one.

Return value is ignored.

	
memorize_finish(state, which_pass)

	Called once after each pass through the data.

Return value is ignored.

	
eval(state, data)

	Evaluate this factor on the given data. Return value should
ideally be a 1-d or 2-d array or Categorical() object,
but this will be checked and converted as needed.

Warning

Do not store evaluation-related state in
attributes of your factor object! The same factor object may
appear in two totally different formulas, or if you have two
factor objects which compare equally, then only one may be
executed, and which one this is may vary randomly depending
on how build_design_matrices() is called! Use only the
state dictionary for storing state.

The lifecycle of a factor object therefore looks like:

	Initialized.

	memorize_passes_needed() is called.

	for i in range(passes_needed):
	memorize_chunk() is called one or more times

	memorize_finish() is called

	eval() is called zero or more times.

Alternative formula implementations

Even if you hate Patsy’s formulas all together, to the extent that
you’re going to go and implement your own competing mechanism for
defining formulas, you can still Patsy-based
interfaces. Unfortunately, this isn’t quite as clean as we’d like,
because for now there’s no way to define a custom
DesignMatrixBuilder. So you do still have to go through
Patsy’s formula-building machinery. But, this machinery simply
passes numerical data through unchanged, so in extremis you can:

	Define a special factor object that simply defers to your existing
machinery

	Define the magic __patsy_get_model_desc__ method on your
formula object. dmatrix() and friends check for the presence
of this method on any object that is passed in, and if found, it is
called (passing in the EvalEnvironment), and expected to
return a ModelDesc. And your ModelDesc can, of
course, include your special factor object(s).

Put together, it looks something like this:

class MyAlternativeFactor(object):
 # A factor object that simply returns the design
 def __init__(self, alternative_formula, side):
 self.alternative_formula = alternative_formula
 self.side = side

 def name(self):
 return self.side

 def memorize_passes_needed(self, state):
 return 0

 def eval(self, state, data):
 return self.alternative_formula.get_matrix(self.side, data)

class MyAlternativeFormula(object):
 ...

 def __patsy_get_model_desc__(self, eval_env):
 return ModelDesc([Term([MyAlternativeFactor(self, side="left")])],
 [Term([MyAlternativeFactor(self, side="right")])],

my_formula = MyAlternativeFormula(...)
dmatrix(my_formula, data)

The only downside to this approach is that you can’t control the names
of individual columns. (A workaround would be to create multiple terms
each with its own factor that returns a different pieces of your
overall matrix.) If this is a problem for you, though, then let’s talk
– we can probably work something out.

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

Using Patsy in your library

Our goal is to make Patsy the de facto standard for describing
models in Python, regardless of the underlying package in use – just
as formulas are the standard interface to all R packages. Therefore
we’ve tried to make it as easy as possible for you to build Patsy
support into your libraries.

Patsy is a good houseguest:

	Pure Python, no compilation necessary.

	Exhaustive tests (>98% statement coverage at time of writing) and
documentation (you’re looking at it).

	No dependencies besides numpy (and we even test against numpy 1.2.1,
as distributed by RHEL 5).

	Tested and supported on every version of Python since 2.4.

So you can be pretty confident that adding a dependency on Patsy
won’t create much hassle for your users.

And, of course, the fundamental design is very conservative – the
formula mini-language in S was first described in Chambers and Hastie
(1992), more than two decades ago. It’s still in heavy use today in R,
which is one of the most popular environments for statistical
programming. Many of your users may already be familiar with it. So we
can be pretty certain that it will hold up to real-world usage.

Using the high-level interface

If you have a function whose signature currently looks like this:

def mymodel2(X, y, ...):
 ...

or this:

def mymodel1(X, ...):
 ...

then adding Patsy support is extremely easy (though of course like
any other API change, you may have to deprecate the old interface, or
provide two interfaces in parallel, depending on your situation). Just
write something like:

def mymodel2_patsy(formula_like, data={}, ...):
 y, X = patsy.dmatrices(formula_like, data, 1)
 ...

or:

def mymodel1_patsy(formula_like, data={}, ...):
 X = patsy.dmatrix(formula_like, data, 1)
 ...

(See dmatrices() and dmatrix() for details.) This won’t
force your users to switch to formulas immediately; they can replace
code that looks like this:

X, y = build_matrices_laboriously()
result = mymodel2(X, y, ...)
other_result = mymodel1(X, ...)

with code like this:

X, y = build_matrices_laboriously()
result = mymodel2((y, X), data=None, ...)
other_result = mymodel1(X, data=None, ...)

Of course in the long run they might want to throw away that
build_matrices_laboriously() function and start using formulas,
but they aren’t forced to just to start using your new interface.

Working with metadata

Once you’ve started using Patsy to handle formulas, you’ll probably
want to take advantage of the metadata that Patsy provides, so that
you can display regression coefficients by name and so forth. Design
matrices processed by Patsy always have a .design_info
attribute which contains lots of information about the design: see
DesignInfo for details.

Predictions

Another nice feature is making predictions on new data. But this
requires that we can take in new data, and transform it to create a
new X matrix. Or if we want to compute the likelihood of our model
on new data, we need both new X and y matrices.

This is also easily done with Patsy – first fetch the relevant
DesignMatrixBuilder objects by doing
input_data.design_info.builder, and then pass them to
build_design_matrices() along with the new data.

Example

Here’s a simplified class for doing ordinary least-squares regression,
demonstrating the above techniques:

Warning

This code has not been validated for numerical
correctness.

import numpy as np
from patsy import dmatrices, build_design_matrices

class LM(object):
 """An example ordinary least squares linear model class, analogous to R's
 lm() function. Don't use this in real life, it isn't properly tested."""
 def __init__(self, formula_like, data={}):
 y, x = dmatrices(formula_like, data, 1)
 self.nobs = x.shape[0]
 self.betas, self.rss, _, _ = np.linalg.lstsq(x, y)
 self._y_design_info = y.design_info
 self._x_design_info = x.design_info

 def __repr__(self):
 summary = ("Ordinary least-squares regression\n"
 " Model: %s ~ %s\n"
 " Regression (beta) coefficients:\n"
 % (self._y_design_info.describe(),
 self._x_design_info.describe()))
 for name, value in zip(self._x_design_info.column_names, self.betas):
 summary += " %s: %0.3g\n" % (name, value[0])
 return summary

 def predict(self, new_data):
 (new_x,) = build_design_matrices([self._x_design_info.builder],
 new_data)
 return np.dot(new_x, self.betas)

 def loglik(self, new_data):
 (new_y, new_x) = build_design_matrices([self._y_design_info.builder,
 self._x_design_info.builder],
 new_data)
 new_pred = np.dot(new_x, self.betas)
 sigma2 = self.rss / self.nobs
 # It'd be more elegant to use scipy.stats.norm.logpdf here, but adding
 # a dependency on scipy makes the docs build more complicated:
 Z = -0.5 * np.log(2 * np.pi * sigma2)
 return Z + -0.5 * (new_y - new_x) ** 2/sigma2

And here’s how it can be used:

In [1]: from patsy import demo_data

In [2]: data = demo_data("x", "y", "a")

Old and boring approach (but it still works):
In [3]: X = np.column_stack(([1] * len(data["y"]), data["x"]))

In [4]: LM((data["y"], X))
Out[4]:
Ordinary least-squares regression
 Model: y0 ~ x0 + x1
 Regression (beta) coefficients:
 x0: 0.677
 x1: -0.217

Fancy new way:
In [5]: m = LM("y ~ x", data)

In [6]: m
Out[6]:
Ordinary least-squares regression
 Model: y ~ 1 + x
 Regression (beta) coefficients:
 Intercept: 0.677
 x: -0.217

In [7]: m.predict({"x": [10, 20, 30]})
Out[7]:
array([[-1.48944498],
 [-3.65620297],
 [-5.82296096]])

In [8]: m.loglik(data)
Out[8]:
array([[-0.28884193, -1.46289596],
 [-2.64235743, -0.8254485],
 [-2.44930737, -2.36666465],
 [-0.90233651, -6.24317017],
 [-1.58762894, -5.56817766],
 [-0.65148056, -10.80114045]])

In [9]: m.loglik({"x": [10, 20, 30], "y": [-1, -2, -3]})
Out[9]:
array([[-7.39939265, -215.51261221],
 [-16.29311998, -861.19721649],
 [-28.74433824, -1937.33822362]])

Your users get support for categorical predictors for free:
In [10]: LM("y ~ a", data)
Out[10]:
Ordinary least-squares regression
 Model: y ~ 1 + a
 Regression (beta) coefficients:
 Intercept: 0.33
 a[T.a2]: 0.241

And variable transformations too:
In [11]: LM("y ~ np.log(x ** 2)", data)
Out[11]:
Ordinary least-squares regression
 Model: y ~ 1 + np.log(x ** 2)
 Regression (beta) coefficients:
 Intercept: 0.399
 np.log(x ** 2): 0.148

Other cool tricks

If you want to compute ANOVAs, then check out
DesignInfo.term_name_slices, DesignInfo.slice().

If you support linear hypothesis tests or otherwise allow your users
to specify linear constraints on model parameters, consider taking
advantage of DesignInfo.linear_constraint().

Extending the formula syntax

The above documentation assumes that you have a relatively simple
model that can be described by one or two matrices (plus whatever
other arguments you take). This covers many of the most popular
models, but it’s definitely not sufficient for every model out there.

Internally, Patsy is designed to be very flexible – for example,
it’s quite straightforward to add custom operators to the formula
parser, or otherwise extend the formula evaluation machinery. (Heck,
it only took an hour or two to repurpose it for a totally different
purpose, parsing linear constraints.) But extending Patsy in a
more fundamental way this will require just a wee bit more complicated
API than just calling dmatrices(), and for this initial release,
we’ve been busy enough getting the basics working that we haven’t yet
taken the time to pin down a public extension API we can support.

So, if you want something fancier – please give us a nudge, it’s
entirely likely we can work something out.

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

Differences between R and Patsy formulas

Patsy has a very high degree of compatibility with R. Almost any
formula you would use in R will also work in Patsy – with a few
caveats.

Note

All R quirks described herein were last verified with R
2.15.0.

Differences from R:

	Most obviously, we both support using arbitrary code to perform
variable transformations, but in Patsy this code is written in
Python, not R.

	Patsy has no %in%. In R, a %in% b is identical to
b:a. Patsy only supports the b:a version of this syntax.

	In Patsy, only ** can be used for exponentiation. In R, both
^ and ** can be used for exponentiation, i.e., you can write
either (a + b)^2 or (a + b)**2. In Patsy (as in Python
generally), only ** indicates exponentiation; ^ is ignored
by the parser (and if present, will be interpreted as a call to the
Python binary XOR operator).

	In Patsy, the left-hand side of a formula uses the same
evaluation rules as the right-hand side. In R, the left hand side is
treated as R code, so a formula like y1 + y2 ~ x1 + x2 actually
regresses the sum of y1 and y2 onto the set of
predictors x1 and x2. In Patsy, the only difference
between the left-hand side and the right-hand side is that there is
no automatic intercept added to the left-hand side. (In this regard
Patsy is similar to the R enhanced formula package Formula [http://cran.r-project.org/web/packages/Formula/index.html].)

	Patsy produces a different column ordering for formulas involving
numeric predictors. In R, there are two rules for term ordering:
first, lower-order interactions are sorted before higher-order
interactions, and second, interactions of the same order are listed
in whatever order they appeared in the formula. In Patsy, we add
another rule: terms are first grouped together based on which
numeric factors they include. Then within each group, we use the
same ordering as R.

	Patsy has more rigorous handling of the presence or absence of
the intercept term. In R, the rules for when deciding whether to
include an intercept are somewhat idiosyncratic and can ignore
things like parentheses. To understand the difference, first
consider the formula a + (b - a). In both Patsy and R, we
first evaluate the (b - a) part; since there is no a term to
remove, this simplifies to just b. We then evaluate a + b:
the end result is a model which contains an a term in it.

Now consider the formula 1 + (b - 1). In Patsy, this is
analogous to the case above: first (b - 1) is reduced to just b,
and then 1 + b produces a model with intercept included. In R, the
parentheses are ignored, and 1 + (b - 1) gives a model that does
not include the intercept.

This can be slightly more confusing when it comes to the implicit
intercept term. In Patsy, this is handled exactly as if the
right-hand side of each formula has an invisible "1 +" inserted at
the beginning. Therefore in Patsy, these formulas are different:

Python:
dmatrices("y ~ b - 1") # equivalent to 1 + b - 1: no intercept
dmatrices("y ~ (b - 1)") # equivalent to 1 + (b - 1): has intercept

In R, these two formulas are equivalent.

	Patsy has a more accurate algorithm for deciding whether to use a
full- or reduced-rank coding scheme for categorical factors. There
are two situations in which R’s coding algorithm for categorical
variables can become confused and produce over- or under-specified
model matrices. Patsy, so far as we are aware, produces correctly
specified matrices in all cases. It’s unlikely that you’ll run into
these in actual usage, but they’re worth mentioning. To illustrate,
let’s define a and b as categorical predictors, each with 2
levels:

R:
> a <- factor(c("a1", "a1", "a2", "a2"))
> b <- factor(c("b1", "b2", "b1", "b2"))

The first problem occurs for formulas like 1 + a:b. This produces
a model matrix with rank 4, just like many other formulas that
include a:b, such as 0 + a:b, 1 + a + a:b, and a*b:

R:
> qr(model.matrix(~ 1 + a:b))$rank
[1] 4

However, the matrix produced for this formula has 5 columns, meaning
that it contains redundant overspecification:

R:
> mat <- model.matrix(~ 1 + a:b)
> ncol(mat)
[1] 5

The underlying problem is that R’s algorithm does not pay attention
to ‘non-local’ redundancies – it will adjust its coding to avoid a
redundancy between two terms of degree-n, or a term of degree-n and
one of degree-(n+1), but it is blind to a redundancy between a term
of degree-n and one of degree-(n+2), as we have here.

Patsy’s algorithm has no such limitation:

Python:
In [1]: a = ["a1", "a1", "a2", "a2"]

In [2]: b = ["b1", "b2", "b1", "b2"]

In [3]: mat = dmatrix("1 + a:b")

In [4]: mat.shape[1]
Out[4]: 4

To produce this result, it codes a:b uses the same columns that
would be used to code b + a:b in the formula "1 + b + a:b".

The second problem occurs for formulas involving numeric
predictors. Effectively, when determining coding schemes, R assumes
that all factors are categorical. So for the formula 0 + a:c +
a:b, R will notice that if it used a full-rank coding for the c
and b factors, then both terms would be collinear with a, and
thus each other. Therefore, it encodes c with a full-rank
encoding, and uses a reduced-rank encoding for b. (And the 0 +
lets it avoid the previous bug.) So far, so good.

But now consider the formula 0 + a:x + a:b, where x is
numeric. Here, a:x and a:b will not be collinear, even if we do
use a full-rank encoding for b. Therefore, we should use a
full-rank encoding for b, and produce a model matrix with 6
columns. But in fact, R gives us only 4:

R:
> x <- c(1, 2, 3, 4)
> mat <- model.matrix(~ 0 + a:x + a:b)
> ncol(mat)
[1] 4

The problem is that it cannot tell the difference between 0 + a:x +
a:b and 0 + a:c + a:b: it uses the same coding for both, whether
it’s appropriate or not.

(The alert reader might wonder whether this bug could be triggered
by a simpler formula, like 0 + x + b. It turns out that R’s code
do_modelmatrix function has a special-case where for first-order
interactions only, it will peek at the type of the data before
deciding on a coding scheme.)

Patsy always checks whether each factor is categorical or numeric
before it makes coding decisions, and thus handles this case
correctly:

Python:
In [1]: x = [1, 2, 3, 4]

In [2]: mat = dmatrix("0 + a:x + a:b")

In [3]: mat.shape[1]
Out[3]: 6

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

Python 2 versus Python 3

The biggest difference between Python 2 and Python 3 is in their
string handling, and this is particularly relevant to Patsy since
it parses user input. We follow a simple rule: input to Patsy
should always be of type str. That means that on Python 2, you
should pass byte-strings (not unicode), and on Python 3, you should
pass unicode strings (not byte-strings). Similarly, when Patsy
passes text back (e.g. DesignInfo.column_names), it’s always
in the form of a str.

In addition to this being the most convenient for users (you never
need to use any b”weird” u”prefixes” when writing a formula string),
it’s actually a necessary consequence of a deeper change in the Python
language: in Python 2, Python code itself is represented as
byte-strings, and that’s the only form of input accepted by the
tokenize [http://docs.python.org/library/tokenize.html#tokenize] module. On the other hand, Python 3’s tokenizer and
parser use unicode, and since Patsy processes Python code, it has
to follow suit.

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

patsy API reference

This is a complete reference for everything you get when you import
patsy.

Basic API

	
patsy.dmatrix(formula_like, data={}, eval_env=0, NA_action='drop', return_type='matrix')

	Construct a single design matrix given a formula_like and data.

	Parameters:	
	formula_like – An object that can be used to construct a design
matrix. See below.

	data – A dict-like object that can be used to look up variables
referenced in formula_like.

	eval_env – Either a EvalEnvironment which will be used to
look up any variables referenced in formula_like that cannot be
found in data, or else a depth represented as an
integer which will be passed to EvalEnvironment.capture().
eval_env=0 means to use the context of the function calling
dmatrix() for lookups. If calling this function from a library,
you probably want eval_env=1, which means that variables should be
resolved in your caller’s namespace.

	NA_action – What to do with rows that contain missing values. You can
"drop" them, "raise" an error, or for customization, pass an
NAAction object. See NAAction for details on what
values count as ‘missing’ (and how to alter this).

	return_type – Either "matrix" or "dataframe". See below.

The formula_like can take a variety of forms. You can use any of the
following:

	(The most common option) A formula string like "x1 + x2" (for
dmatrix()) or "y ~ x1 + x2" (for dmatrices()). For
details see How formulas work.

	A ModelDesc, which is a Python object representation of a
formula. See How formulas work and Model specification for experts and computers for
details.

	A DesignMatrixBuilder.

	An object that has a method called __patsy_get_model_desc__().
For details see Model specification for experts and computers.

	A numpy array_like (for dmatrix()) or a tuple
(array_like, array_like) (for dmatrices()). These will have
metadata added, representation normalized, and then be returned
directly. In this case data and eval_env are
ignored. There is special handling for two cases:
	DesignMatrix objects will have their DesignInfo
preserved. This allows you to set up custom column names and term
information even if you aren’t using the rest of the patsy
machinery.

	pandas.DataFrame or pandas.Series objects will have
their (row) indexes checked. If two are passed in, their indexes must
be aligned. If return_type="dataframe", then their indexes will be
preserved on the output.

Regardless of the input, the return type is always either:

	A DesignMatrix, if return_type="matrix" (the default)

	A pandas.DataFrame, if return_type="dataframe".

The actual contents of the design matrix is identical in both cases, and
in both cases a DesignInfo object will be available in a
.design_info attribute on the return value. However, for
return_type="dataframe", any pandas indexes on the input (either in
data or directly passed through formula_like) will be preserved, which
may be useful for e.g. time-series models.

New in version 0.2.0: The NA_action argument.

	
patsy.dmatrices(formula_like, data={}, eval_env=0, NA_action='drop', return_type='matrix')

	Construct two design matrices given a formula_like and data.

This function is identical to dmatrix(), except that it requires
(and returns) two matrices instead of one. By convention, the first matrix
is the “outcome” or “y” data, and the second is the “predictor” or “x”
data.

See dmatrix() for details.

	
patsy.incr_dbuilders(formula_like, data_iter_maker, eval_env=0, NA_action='drop')

	Construct two design matrix builders incrementally from a large data
set.

incr_dbuilders() is to incr_dbuilder() as dmatrices() is
to dmatrix(). See incr_dbuilder() for details.

	
patsy.incr_dbuilder(formula_like, data_iter_maker, eval_env=0, NA_action='drop')

	Construct a design matrix builder incrementally from a large data set.

	Parameters:	
	formula_like – Similar to dmatrix(), except that explicit
matrices are not allowed. Must be a formula string, a
ModelDesc, a DesignMatrixBuilder, or an object with a
__patsy_get_model_desc__ method.

	data_iter_maker – A zero-argument callable which returns an iterator
over dict-like data objects. This must be a callable rather than a
simple iterator because sufficiently complex formulas may require
multiple passes over the data (e.g. if there are nested stateful
transforms).

	eval_env – Either a EvalEnvironment which will be used to
look up any variables referenced in formula_like that cannot be
found in data, or else a depth represented as an
integer which will be passed to EvalEnvironment.capture().
eval_env=0 means to use the context of the function calling
incr_dbuilder() for lookups. If calling this function from a
library, you probably want eval_env=1, which means that variables
should be resolved in your caller’s namespace.

	NA_action – An NAAction object or string, used to determine
what values count as ‘missing’ for purposes of determining the levels of
categorical factors.

	Returns:	A DesignMatrixBuilder

Tip: for data_iter_maker, write a generator like:

def iter_maker():
 for data_chunk in my_data_store:
 yield data_chunk

and pass iter_maker (not iter_maker()).

New in version 0.2.0: The NA_action argument.

	
exception patsy.PatsyError(message, origin=None)

	This is the main error type raised by Patsy functions.

In addition to the usual Python exception features, you can pass a second
argument to this function specifying the origin of the error; this is
included in any error message, and used to help the user locate errors
arising from malformed formulas. This second argument should be an
Origin object, or else an arbitrary object with a .origin
attribute. (If it is neither of these things, then it will simply be
ignored.)

For ordinary display to the user with default formatting, use
str(exc). If you want to do something cleverer, you can use the
.message and .origin attributes directly. (The latter may be
None.)

Convenience utilities

	
patsy.balanced(factor_name=num_levels[, factor_name=num_levels, ..., repeat=1])

	Create simple balanced factorial designs for testing.

Given some factor names and the number of desired levels for each,
generates a balanced factorial design in the form of a data
dictionary. For example:

In [1]: balanced(a=2, b=3)
Out[1]:
{'a': ['a1', 'a1', 'a1', 'a2', 'a2', 'a2'],
 'b': ['b1', 'b2', 'b3', 'b1', 'b2', 'b3']}

By default it produces exactly one instance of each combination of levels,
but if you want multiple replicates this can be accomplished via the
repeat argument:

In [1]: balanced(a=2, b=2, repeat=2)
Out[1]:
{'a': ['a1', 'a1', 'a2', 'a2', 'a1', 'a1', 'a2', 'a2'],
 'b': ['b1', 'b2', 'b1', 'b2', 'b1', 'b2', 'b1', 'b2']}

	
patsy.demo_data(*names, nlevels=2, min_rows=5)

	Create simple categorical/numerical demo data.

Pass in a set of variable names, and this function will return a simple
data set using those variable names.

Names whose first letter falls in the range “a” through “m” will be made
categorical (with nlevels levels). Those that start with a “p” through
“z” are numerical.

We attempt to produce a balanced design on the categorical variables,
repeating as necessary to generate at least min_rows data
points. Categorical variables are returned as a list of strings.

Numerical data is generated by sampling from a normal distribution. A
fixed random seed is used, so that identical calls to demo_data() will
produce identical results. Numerical data is returned in a numpy array.

Example:

Design metadata

	
class patsy.DesignInfo(column_names, term_slices=None, term_name_slices=None, builder=None)

	A DesignInfo object holds metadata about a design matrix.

This is the main object that Patsy uses to pass information to
statistical libraries. Usually encountered as the .design_info attribute
on design matrices.

Here’s an example of the most common way to get a DesignInfo:

In [1]: mat = dmatrix("a + x", demo_data("a", "x", nlevels=3))

In [2]: di = mat.design_info

	
column_names

	The names of each column, represented as a list of strings in
the proper order. Guaranteed to exist.

In [1]: di.column_names
Out[1]: ['Intercept', 'a[T.a2]', 'a[T.a3]', 'x']

	
column_name_indexes

	An OrderedDict [http://docs.python.org/library/collections.html#collections.OrderedDict] mapping column names (as
strings) to column indexes (as integers). Guaranteed to exist
and to be sorted from low to high.

In [1]: di.column_name_indexes
Out[1]: OrderedDict([('Intercept', 0), ('a[T.a2]', 1), ('a[T.a3]', 2), ('x', 3)])

	
term_names

	The names of each term, represented as a list of strings in
the proper order. Guaranteed to exist. There is a one-to-many
relationship between columns and terms – each term generates
one or more columns.

In [1]: di.term_names
Out[1]: ['Intercept', 'a', 'x']

	
term_name_slices

	An OrderedDict [http://docs.python.org/library/collections.html#collections.OrderedDict] mapping term names (as
strings) to Python slice() objects indicating which
columns correspond to each term. Guaranteed to exist. The slices
are guaranteed to be sorted from left to right and to cover the
whole range of columns with no overlaps or gaps.

In [1]: di.term_name_slices
Out[1]: OrderedDict([('Intercept', slice(0, 1, None)), ('a', slice(1, 3, None)), ('x', slice(3, 4, None))])

	
terms

	A list of Term objects representing each term. May be
None, for example if a user passed in a plain preassembled
design matrix rather than using the Patsy machinery.

In [1]: di.terms
Out[1]: [Term([]), Term([EvalFactor('a')]), Term([EvalFactor('x')])]

In [2]: [term.name() for term in di.terms]
Out[2]: ['Intercept', 'a', 'x']

	
term_slices

	An OrderedDict [http://docs.python.org/library/collections.html#collections.OrderedDict] mapping Term
objects to Python slice() objects indicating which columns
correspond to which terms. Like terms, this may be None.

In [1]: di.term_slices
Out[1]: OrderedDict([(Term([]), slice(0, 1, None)), (Term([EvalFactor('a')]), slice(1, 3, None)), (Term([EvalFactor('x')]), slice(3, 4, None))])

	
builder

	A DesignMatrixBuilder object that can be used to
generate more design matrices of this type (e.g. for
prediction). May be None.

A number of convenience methods are also provided that take
advantage of the above metadata:

	
describe()

	Returns a human-readable string describing this design info.

Example:

In [1]: y, X = dmatrices("y ~ x1 + x2", demo_data("y", "x1", "x2"))

In [2]: y.design_info.describe()
Out[2]: 'y'

In [3]: X.design_info.describe()
Out[3]: '1 + x1 + x2'

Warning

There is no guarantee that the strings returned by this
function can be parsed as formulas. They are best-effort descriptions
intended for human users.

	
linear_constraint(constraint_likes)

	Construct a linear constraint in matrix form from a (possibly
symbolic) description.

Possible inputs:

	A dictionary which is taken as a set of equality constraint. Keys
can be either string column names, or integer column indexes.

	A string giving a arithmetic expression referring to the matrix
columns by name.

	A list of such strings which are ANDed together.

	A tuple (A, b) where A and b are array_likes, and the constraint is
Ax = b. If necessary, these will be coerced to the proper
dimensionality by appending dimensions with size 1.

The string-based language has the standard arithmetic operators, / * +
- and parentheses, plus “=” is used for equality and ”,” is used to
AND together multiple constraint equations within a string. You can
If no = appears in some expression, then that expression is assumed to
be equal to zero. Division is always float-based, even if
__future__.true_division isn’t in effect.

Returns a LinearConstraint object.

Examples:

di = DesignInfo(["x1", "x2", "x3"])

Equivalent ways to write x1 == 0:
di.linear_constraint({"x1": 0}) # by name
di.linear_constraint({0: 0}) # by index
di.linear_constraint("x1 = 0") # string based
di.linear_constraint("x1") # can leave out "= 0"
di.linear_constraint("2 * x1 = (x1 + 2 * x1) / 3")
di.linear_constraint(([1, 0, 0], 0)) # constraint matrices

Equivalent ways to write x1 == 0 and x3 == 10
di.linear_constraint({"x1": 0, "x3": 10})
di.linear_constraint({0: 0, 2: 10})
di.linear_constraint({0: 0, "x3": 10})
di.linear_constraint("x1 = 0, x3 = 10")
di.linear_constraint("x1, x3 = 10")
di.linear_constraint(["x1", "x3 = 0"]) # list of strings
di.linear_constraint("x1 = 0, x3 - 10 = x1")
di.linear_constraint([[1, 0, 0], [0, 0, 1]], [0, 10])

You can also chain together equalities, just like Python:
di.linear_constraint("x1 = x2 = 3")

	
slice(columns_specifier)

	Locate a subset of design matrix columns, specified symbolically.

A patsy design matrix has two levels of structure: the individual
columns (which are named), and the terms in
the formula that generated those columns. This is a one-to-many
relationship: a single term may span several columns. This method
provides a user-friendly API for locating those columns.

(While we talk about columns here, this is probably most useful for
indexing into other arrays that are derived from the design matrix,
such as regression coefficients or covariance matrices.)

The columns_specifier argument can take a number of forms:

	A term name

	A column name

	A Term object

	An integer giving a raw index

	A raw slice object

In all cases, a Python slice() object is returned, which can be
used directly for indexing.

Example:

y, X = dmatrices("y ~ a", demo_data("y", "a", nlevels=3))
betas = np.linalg.lstsq(X, y)[0]
a_betas = betas[X.design_info.slice("a")]

(If you want to look up a single individual column by name, use
design_info.column_name_indexes[name].)

	
classmethod from_array(array_like, default_column_prefix='column')

	Find or construct a DesignInfo appropriate for a given array_like.

If the input array_like already has a .design_info
attribute, then it will be returned. Otherwise, a new DesignInfo
object will be constructed, using names either taken from the
array_like (e.g., for a pandas DataFrame with named columns), or
constructed using default_column_prefix.

This is how dmatrix() (for example) creates a DesignInfo object
if an arbitrary matrix is passed in.

	Parameters:	
	array_like – An ndarray or pandas container.

	default_column_prefix – If it’s necessary to invent column names,
then this will be used to construct them.

	Returns:	a DesignInfo object

	
class patsy.DesignMatrix

	A simple numpy array subclass that carries design matrix metadata.

	
design_info

	A DesignInfo object containing metadata about this design
matrix.

This class also defines a fancy __repr__ method with labeled
columns. Otherwise it is identical to a regular numpy ndarray.

Warning

You should never check for this class using
isinstance() [http://docs.python.org/library/functions.html#isinstance]. Limitations of the numpy API mean that it is
impossible to prevent the creation of numpy arrays that have type
DesignMatrix, but that are not actually design matrices (and such
objects will behave like regular ndarrays in every way). Instead, check
for the presence of a .design_info attribute – this will be
present only on “real” DesignMatrix objects.

	
static __new__(input_array, design_info=None, default_column_prefix='column')

	Create a DesignMatrix, or cast an existing matrix to a DesignMatrix.

A call like:

DesignMatrix(my_array)

will convert an arbitrary array_like object into a DesignMatrix.

The return from this function is guaranteed to be a two-dimensional
ndarray with a real-valued floating point dtype, and a
.design_info attribute which matches its shape. If the
design_info argument is not given, then one is created via
DesignInfo.from_array() using the given
default_column_prefix.

Depending on the input array, it is possible this will pass through
its input unchanged, or create a view.

Stateful transforms

Patsy comes with a number of stateful transforms built in:

	
patsy.center(x)

	A stateful transform that centers input data, i.e., subtracts the mean.

If input has multiple columns, centers each column separately.

Equivalent to standardize(x, rescale=False)

	
patsy.standardize(x, center=True, rescale=True, ddof=0)

	A stateful transform that standardizes input data, i.e. it subtracts the
mean and divides by the sample standard deviation.

Either centering or rescaling or both can be disabled by use of keyword
arguments. The ddof argument controls the delta degrees of freedom when
computing the standard deviation (cf. numpy.std() [http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std]). The default of
ddof=0 produces the maximum likelihood estimate; use ddof=1 if you
prefer the square root of the unbiased estimate of the variance.

If input has multiple columns, standardizes each column separately.

Note

This function computes the mean and standard deviation using a
memory-efficient online algorithm, making it suitable for use with
large incrementally processed data-sets.

	
patsy.scale(x, center=True, rescale=True, ddof=0)

	An alias for standardize(), for R compatibility.

Finally, this is not itself a stateful transform, but it’s useful if
you want to define your own:

	
patsy.stateful_transform(class_)

	Create a stateful transform callable object from a class that fulfills
the stateful transform protocol.

Handling categorical data

	
class patsy.Treatment(reference=None)

	Treatment coding (also known as dummy coding).

This is the default coding.

For reduced-rank coding, one level is chosen as the “reference”, and its
mean behaviour is represented by the intercept. Each column of the
resulting matrix represents the difference between the mean of one level
and this reference level.

For full-rank coding, classic “dummy” coding is used, and each column of
the resulting matrix represents the mean of the corresponding level.

The reference level defaults to the first level, or can be specified
explicitly.

reduced rank
In [1]: dmatrix("C(a, Treatment)", balanced(a=3))
Out[1]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Treatment)[T.a2] C(a, Treatment)[T.a3]
 1 0 0
 1 1 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 'C(a, Treatment)' (columns 1:3)

full rank
In [2]: dmatrix("0 + C(a, Treatment)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
 C(a, Treatment)[a1] C(a, Treatment)[a2] C(a, Treatment)[a3]
 1 0 0
 0 1 0
 0 0 1
 Terms:
 'C(a, Treatment)' (columns 0:3)

Setting a reference level
In [3]: dmatrix("C(a, Treatment(1))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Treatment(1))[T.a1] C(a, Treatment(1))[T.a3]
 1 1 0
 1 0 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 'C(a, Treatment(1))' (columns 1:3)

In [4]: dmatrix("C(a, Treatment('a2'))", balanced(a=3))
Out[4]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Treatment('a2'))[T.a1] C(a, Treatment('a2'))[T.a3]
 1 1 0
 1 0 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 "C(a, Treatment('a2'))" (columns 1:3)

Equivalent to R contr.treatment. The R documentation suggests that
using Treatment(reference=-1) will produce contrasts that are
“equivalent to those produced by many (but not all) SAS procedures”.

	
class patsy.Diff

	Backward difference coding.

This coding scheme is useful for ordered factors, and compares the mean of
each level with the preceding level. So you get the second level minus the
first, the third level minus the second, etc.

For full-rank coding, a standard intercept term is added (which gives the
mean value for the first level).

Examples:

Reduced rank
In [1]: dmatrix("C(a, Diff)", balanced(a=3))
Out[1]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Diff)[D.a1] C(a, Diff)[D.a2]
 1 -0.66667 -0.33333
 1 0.33333 -0.33333
 1 0.33333 0.66667
 Terms:
 'Intercept' (column 0)
 'C(a, Diff)' (columns 1:3)

Full rank
In [2]: dmatrix("0 + C(a, Diff)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
 C(a, Diff)[D.a1] C(a, Diff)[D.a2] C(a, Diff)[D.a3]
 1 -0.66667 -0.33333
 1 0.33333 -0.33333
 1 0.33333 0.66667
 Terms:
 'C(a, Diff)' (columns 0:3)

	
class patsy.Poly(scores=None)

	Orthogonal polynomial contrast coding.

This coding scheme treats the levels as ordered samples from an underlying
continuous scale, whose effect takes an unknown functional form which is
Taylor-decomposed [https://en.wikipedia.org/wiki/Taylor_series] into the sum of a linear, quadratic, etc. components.

For reduced-rank coding, you get a linear column, a quadratic column,
etc., up to the number of levels provided.

For full-rank coding, the same scheme is used, except that the zero-order
constant polynomial is also included. I.e., you get an intercept column
included as part of your categorical term.

By default the levels are treated as equally spaced, but you can override
this by providing a value for the scores argument.

Examples:

Reduced rank
In [1]: dmatrix("C(a, Poly)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
 Intercept C(a, Poly).Linear C(a, Poly).Quadratic C(a, Poly).Cubic
 1 -0.67082 0.5 -0.22361
 1 -0.22361 -0.5 0.67082
 1 0.22361 -0.5 -0.67082
 1 0.67082 0.5 0.22361
 Terms:
 'Intercept' (column 0)
 'C(a, Poly)' (columns 1:4)

Full rank
In [2]: dmatrix("0 + C(a, Poly)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
 C(a, Poly).Constant C(a, Poly).Linear C(a, Poly).Quadratic
 1 -0.70711 0.40825
 1 -0.00000 -0.81650
 1 0.70711 0.40825
 Terms:
 'C(a, Poly)' (columns 0:3)

Explicit scores
In [3]: dmatrix("C(a, Poly([1, 2, 10]))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Poly([1, 2, 10])).Linear C(a, Poly([1, 2, 10])).Quadratic
 1 -0.47782 0.66208
 1 -0.33447 -0.74485
 1 0.81229 0.08276
 Terms:
 'Intercept' (column 0)
 'C(a, Poly([1, 2, 10]))' (columns 1:3)

This is equivalent to R’s contr.poly. (But note that in R, reduced
rank encodings are always dummy-coded, regardless of what contrast you
have set.)

	
class patsy.Sum(omit=None)

	Deviation coding (also known as sum-to-zero coding).

Compares the mean of each level to the mean-of-means. (In a balanced
design, compares the mean of each level to the overall mean.)

For full-rank coding, a standard intercept term is added.

One level must be omitted to avoid redundancy; by default this is the last
level, but this can be adjusted via the omit argument.

Warning

There are multiple definitions of ‘deviation coding’ in
use. Make sure this is the one you expect before trying to interpret
your results!

Examples:

Reduced rank
In [1]: dmatrix("C(a, Sum)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
 Intercept C(a, Sum)[S.a1] C(a, Sum)[S.a2] C(a, Sum)[S.a3]
 1 1 0 0
 1 0 1 0
 1 0 0 1
 1 -1 -1 -1
 Terms:
 'Intercept' (column 0)
 'C(a, Sum)' (columns 1:4)

Full rank
In [2]: dmatrix("0 + C(a, Sum)", balanced(a=4))
Out[2]:
DesignMatrix with shape (4, 4)
 C(a, Sum)[mean] C(a, Sum)[S.a1] C(a, Sum)[S.a2] C(a, Sum)[S.a3]
 1 1 0 0
 1 0 1 0
 1 0 0 1
 1 -1 -1 -1
 Terms:
 'C(a, Sum)' (columns 0:4)

Omit a different level
In [3]: dmatrix("C(a, Sum(1))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Sum(1))[S.a1] C(a, Sum(1))[S.a3]
 1 1 0
 1 -1 -1
 1 0 1
 Terms:
 'Intercept' (column 0)
 'C(a, Sum(1))' (columns 1:3)

In [4]: dmatrix("C(a, Sum('a1'))", balanced(a=3))
Out[4]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Sum('a1'))[S.a2] C(a, Sum('a1'))[S.a3]
 1 -1 -1
 1 1 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 "C(a, Sum('a1'))" (columns 1:3)

This is equivalent to R’s contr.sum.

	
class patsy.Helmert

	Helmert contrasts.

Compares the second level with the first, the third with the average of
the first two, and so on.

For full-rank coding, a standard intercept term is added.

Warning

There are multiple definitions of ‘Helmert coding’ in
use. Make sure this is the one you expect before trying to interpret
your results!

Examples:

Reduced rank
In [1]: dmatrix("C(a, Helmert)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
 Intercept C(a, Helmert)[H.a2] C(a, Helmert)[H.a3] C(a, Helmert)[H.a4]
 1 -1 -1 -1
 1 1 -1 -1
 1 0 2 -1
 1 0 0 3
 Terms:
 'Intercept' (column 0)
 'C(a, Helmert)' (columns 1:4)

Full rank
In [2]: dmatrix("0 + C(a, Helmert)", balanced(a=4))
Out[2]:
DesignMatrix with shape (4, 4)
 Columns:
 ['C(a, Helmert)[H.intercept]',
 'C(a, Helmert)[H.a2]',
 'C(a, Helmert)[H.a3]',
 'C(a, Helmert)[H.a4]']
 Terms:
 'C(a, Helmert)' (columns 0:4)
 (to view full data, use np.asarray(this_obj))

This is equivalent to R’s contr.helmert.

	
class patsy.ContrastMatrix(matrix, column_suffixes)

	A simple container for a matrix used for coding categorical factors.

Attributes:

	
matrix

	A 2d ndarray, where each column corresponds to one column of the
resulting design matrix, and each row contains the entries for a single
categorical variable level. Usually n-by-n for a full rank coding or
n-by-(n-1) for a reduced rank coding, though other options are
possible.

	
column_suffixes

	A list of strings to be appended to the factor name, to produce the
final column names. E.g. for treatment coding the entries will look
like "[T.level1]".

Spline regression

	
patsy.bs(x, df=None, knots=None, degree=3, include_intercept=False, lower_bound=None, upper_bound=None)

	Generates a B-spline basis for x, allowing non-linear fits. The usual
usage is something like:

y ~ 1 + bs(x, 4)

to fit y as a smooth function of x, with 4 degrees of freedom
given to the smooth.

	Parameters:	
	df – The number of degrees of freedom to use for this spline. The
return value will have this many columns. You must specify at least one
of df and knots.

	knots – The interior knots to use for the spline. If unspecified, then
equally spaced quantiles of the input data are used. You must specify at
least one of df and knots.

	degree – The degree of the spline to use.

	include_intercept – If True, then the resulting
spline basis will span the intercept term (i.e., the constant
function). If False (the default) then this will not be the case,
which is useful for avoiding overspecification in models that include
multiple spline terms and/or an intercept term.

	lower_bound – The lower exterior knot location.

	upper_bound – The upper exterior knot location.

A spline with degree=0 is piecewise constant with breakpoints at each
knot, and the default knot positions are quantiles of the input. So if you
find yourself in the situation of wanting to quantize a continuous
variable into equal-sized bins with a constant effect across each bin, you
can use bs(x, num_bins, degree=0).

Similarly, a spline with degree=1 is piecewise linear with breakpoints
at each knot.

The default is degree=3, which gives a cubic b-spline.

This is a stateful transform (for details see
Stateful transforms). If knots, lower_bound, or
upper_bound are not specified, they will be calculated from the data
and then the chosen values will be remembered and re-used for prediction
from the fitted model.

Using this function requires scipy be installed.

Note

This function is very similar to the R function of the same
name. In cases where both return output at all (e.g., R’s bs will
raise an error if degree=0, while patsy’s will not), they should
produce identical output given identical input and parameter settings.

Warning

I’m not sure on what the proper handling of points outside
the lower/upper bounds is, so for now attempting to evaluate a spline
basis at such points produces an error. Patches gratefully accepted.

New in version 0.2.0.

Working with formulas programmatically

	
class patsy.Term(factors)

	The interaction between a collection of factor objects.

This is one of the basic types used in representing formulas, and
corresponds to an expression like "a:b:c" in a formula string.
For details, see How formulas work and Model specification for experts and computers.

Terms are hashable and compare by value.

Attributes:

	
factors

	A tuple of factor objects.

	
patsy.INTERCEPT

	This is a pre-instantiated zero-factors Term object
representing the intercept, useful for making your code clearer. Do
remember though that this is not a singleton object, i.e., you
should compare against it using ==, not is.

	
class patsy.LookupFactor(varname, force_categorical=False, contrast=None, levels=None, origin=None)

	A simple factor class that simply looks up a named entry in the given
data.

Useful for programatically constructing formulas, and as a simple example
of the factor protocol. For details see
Model specification for experts and computers.

Example:

dmatrix(ModelDesc([], [Term([LookupFactor("x")])]), {"x": [1, 2, 3]})

	Parameters:	
	varname – The name of this variable; used as a lookup key in the
passed in data dictionary/DataFrame/whatever.

	force_categorical – If True, then treat this factor as
categorical. (Equivalent to using C() in a regular formula, but
of course you can’t do that with a LookupFactor.

	contrast – If given, the contrast to use; see C(). (Requires
force_categorical=True.)

	levels – If given, the categorical levels; see C(). (Requires
force_categorical=True.)

	origin – Either None, or the Origin of this factor for use
in error reporting.

New in version 0.2.0: The force_categorical and related arguments.

	
class patsy.EvalFactor(code, eval_env, origin=None)

	A factor class that executes arbitrary Python code and supports
stateful transforms.

	Parameters:	
	code – A string containing a Python expression, that will be
evaluated to produce this factor’s value.

	eval_env – The EvalEnvironment where code will be
evaluated.

This is the standard factor class that is used when parsing formula
strings and implements the standard stateful transform processing. See
Stateful transforms and Model specification for experts and computers.

Two EvalFactor’s are considered equal (e.g., for purposes of
redundancy detection) if they use the same evaluation environment and
they contain the same token stream. Basically this means that the
source code must be identical except for whitespace:

env = EvalEnvironment.capture()
assert EvalFactor("a + b", env) == EvalFactor("a+b", env)
assert EvalFactor("a + b", env) != EvalFactor("b + a", env)

	
class patsy.ModelDesc(lhs_termlist, rhs_termlist)

	A simple container representing the termlists parsed from a formula.

This is a simple container object which has exactly the same
representational power as a formula string, but is a Python object
instead. You can construct one by hand, and pass it to functions like
dmatrix() or incr_dbuilder() that are expecting a formula
string, but without having to do any messy string manipulation. For
details see Model specification for experts and computers.

Attributes:

	
lhs_termlist

	
rhs_termlist

	Two termlists representing the left- and right-hand sides of a
formula, suitable for passing to design_matrix_builders().

Working with the Python execution environment

	
class patsy.EvalEnvironment(namespaces, flags=0)

	Represents a Python execution environment.

Encapsulates a namespace for variable lookup and set of __future__
flags.

	
add_outer_namespace(namespace)

	Expose the contents of a dict-like object to the encapsulated
environment.

The given namespace will be checked last, after all existing namespace
lookups have failed.

	
classmethod capture(eval_env=0, reference=0)

	Capture an execution environment from the stack.

If eval_env is already an EvalEnvironment, it is returned
unchanged. Otherwise, we walk up the stack by eval_env + reference
steps and capture that function’s evaluation environment.

For eval_env=0 and reference=0, the default, this captures the
stack frame of the function that calls capture(). If eval_env
+ reference is 1, then we capture that function’s caller, etc.

This somewhat complicated calling convention is designed to be
convenient for functions which want to capture their caller’s
environment by default, but also allow explicit environments to be
specified. See the second example.

Example:

x = 1
this_env = EvalEnvironment.capture()
assert this_env["x"] == 1
def child_func():
 return EvalEnvironment.capture(1)
this_env_from_child = child_func()
assert this_env_from_child["x"] == 1

Example:

This function can be used like:
my_model(formula_like, data)
-> evaluates formula_like in caller's environment
my_model(formula_like, data, eval_env=1)
-> evaluates formula_like in caller's caller's environment
my_model(formula_like, data, eval_env=my_env)
-> evaluates formula_like in environment 'my_env'
def my_model(formula_like, data, eval_env=0):
 eval_env = EvalEnvironment.capture(eval_env, reference=1)
 return model_setup_helper(formula_like, data, eval_env)

This is how dmatrix() works.

	
eval(expr, source_name='<string>', inner_namespace={})

	Evaluate some Python code in the encapsulated environment.

	Parameters:	
	expr – A string containing a Python expression.

	source_name – A name for this string, for use in tracebacks.

	inner_namespace – A dict-like object that will be checked first
when expr attempts to access any variables.

	Returns:	The value of expr.

	
namespace

	A dict-like object that can be used to look up variables accessible
from the encapsulated environment.

Building design matrices

	
patsy.design_matrix_builders(termlists, data_iter_maker, NA_action='drop')

	Construct several DesignMatrixBuilders from termlists.

This is one of Patsy’s fundamental functions. This function and
build_design_matrices() together form the API to the core formula
interpretation machinery.

	Parameters:	
	termlists – A list of termlists, where each termlist is a list of
Term objects which together specify a design matrix.

	data_iter_maker – A zero-argument callable which returns an iterator
over dict-like data objects. This must be a callable rather than a
simple iterator because sufficiently complex formulas may require
multiple passes over the data (e.g. if there are nested stateful
transforms).

	NA_action – An NAAction object or string, used to determine
what values count as ‘missing’ for purposes of determining the levels of
categorical factors.

	Returns:	A list of DesignMatrixBuilder objects, one for each
termlist passed in.

This function performs zero or more iterations over the data in order to
sniff out any necessary information about factor types, set up stateful
transforms, pick column names, etc.

See How formulas work for details.

New in version 0.2.0: The NA_action argument.

	
class patsy.DesignMatrixBuilder

	This is an opaque class that represents Patsy’s knowledge about
how to build a design matrix. You get these objects from
design_matrix_builders(), and you pass them to
build_design_matrices().

	
design_info

	This attribute gives metadata about the matrices that this
builder object can produce, in the form of a DesignInfo
object.

	
subset(which_terms)

	Create a new DesignMatrixBuilder that includes only a
subset of the terms that this object does.

For example, if builder has terms x, y, and z, then:

builder2 = builder.subset(["x", "z"])

will return a new builder that will return design matrices with only
the columns corresponding to the terms x and z. After we do this,
then in general these two expressions will return the same thing (here
we assume that x, y, and z each generate a single column of the
output):

build_design_matrix([builder], data)[0][:, [0, 2]]
build_design_matrix([builder2], data)[0]

However, a critical difference is that in the second case, data need
not contain any values for y. This is very useful when doing
prediction using a subset of a model, in which situation R usually
forces you to specify dummy values for y.

If using a formula to specify the terms to include, remember that like
any formula, the intercept term will be included by default, so use
0 or -1 in your formula if you want to avoid this.

	Parameters:	which_terms – The terms which should be kept in the new
DesignMatrixBuilder. If this is a string, then it is parsed
as a formula, and then the names of the resulting terms are taken as
the terms to keep. If it is a list, then it can contain a mixture of
term names (as strings) and Term objects.

	
patsy.build_design_matrices(builders, data, NA_action='drop', return_type='matrix', dtype=dtype('float64'))

	Construct several design matrices from DesignMatrixBuilder
objects.

This is one of Patsy’s fundamental functions. This function and
design_matrix_builders() together form the API to the core formula
interpretation machinery.

	Parameters:	
	builders – A list of DesignMatrixBuilders specifying the
design matrices to be built.

	data – A dict-like object which will be used to look up data.

	NA_action – What to do with rows that contain missing values. You can
"drop" them, "raise" an error, or for customization, pass an
NAAction object. See NAAction for details on what
values count as ‘missing’ (and how to alter this).

	return_type – Either "matrix" or "dataframe". See below.

	dtype – The dtype of the returned matrix. Useful if you want to use
single-precision or extended-precision.

This function returns either a list of DesignMatrix objects (for
return_type="matrix") or a list of pandas.DataFrame objects
(for return_type="dataframe"). In the latter case, the DataFrames will
preserve any (row) indexes that were present in the input, which may be
useful for time-series models etc. In any case, all returned design
matrices will have .design_info attributes containing the appropriate
DesignInfo objects.

Unlike design_matrix_builders(), this function takes only a simple
data argument, not any kind of iterator. That’s because this function
doesn’t need a global view of the data – everything that depends on the
whole data set is already encapsulated in the builders. If you are
incrementally processing a large data set, simply call this function for
each chunk.

New in version 0.2.0: The NA_action argument.

Missing values

	
class patsy.NAAction(on_NA='drop', NA_types=['None', 'NaN'])

	An NAAction object defines a strategy for handling missing
data.

“NA” is short for “Not Available”, and is used to refer to any value which
is somehow unmeasured or unavailable. In the long run, it is devoutly
hoped that numpy will gain first-class missing value support. Until then,
we work around this lack as best we’re able.

There are two parts to this: First, we have to determine what counts as
missing data. For numerical data, the default is to treat NaN values
(e.g., numpy.nan) as missing. For categorical data, the default is to
treat NaN values, and also the Python object None, as missing. (This is
consistent with how pandas does things, so if you’re already using
None/NaN to mark missing data in your pandas DataFrames, you’re good to
go.)

Second, we have to decide what to do with any missing data when we
encounter it. One option is to simply discard any rows which contain
missing data from our design matrices (drop). Another option is to
raise an error (raise). A third option would be to simply let the
missing values pass through into the returned design matrices. However,
this last option is not yet implemented, because of the lack of any
standard way to represent missing values in arbitrary numpy matrices;
we’re hoping numpy will get this sorted out before we standardize on
anything ourselves.

You can control how patsy handles missing data through the NA_action=
argument to functions like build_design_matrices() and
dmatrix(). If all you want to do is to choose between drop and
raise behaviour, you can pass one of those strings as the
NA_action= argument directly. If you want more fine-grained control
over how missing values are detected and handled, then you can create an
instance of this class, or your own object that implements the same
interface, and pass that as the NA_action= argument instead.

The NAAction constructor takes the following arguments:

	Parameters:	
	on_NA – How to handle missing values. The default is "drop",
which removes all rows from all matrices which contain any missing
values. Also available is "raise", which raises an exception
when any missing values are encountered.

	NA_types – Which rules are used to identify missing values, as a
list of strings. Allowed values are:

	"None": treat the None object as missing in categorical
data.

	"NaN": treat floating point NaN values as missing in
categorical and numerical data.

New in version 0.2.0.

	
handle_NA(values, is_NAs, origins)

	Takes a set of factor values that may have NAs, and handles them
appropriately.

	Parameters:	
	values – A list of ndarray objects representing the data.
These may be 1- or 2-dimensional, and may be of varying dtype. All
will have the same number of rows (or entries, for 1-d arrays).

	is_NAs – A list with the same number of entries as values,
containing boolean ndarray objects that indicate which rows
contain NAs in the corresponding entry in values.

	origins – A list with the same number of entries as
values, containing information on the origin of each
value. If we encounter a problem with some particular value, we use
the corresponding entry in origins as the origin argument when
raising a PatsyError.

	Returns:	A list of new values (which may have a differing number of
rows.)

	
is_categorical_NA(obj)

	Return True if obj is a categorical NA value.

Note that here obj is a single scalar value.

	
is_numerical_NA(arr)

	Returns a 1-d mask array indicating which rows in an array of
numerical values contain at least one NA value.

Note that here arr is a numpy array or pandas DataFrame.

Linear constraints

	
class patsy.LinearConstraint(variable_names, coefs, constants=None)

	A linear constraint in matrix form.

This object represents a linear constraint of the form Ax = b.

Usually you won’t be constructing these by hand, but instead get them as
the return value from DesignInfo.linear_constraint().

	
coefs

	A 2-dimensional ndarray with float dtype, representing A.

	
constants

	A 2-dimensional single-column ndarray with float dtype, representing
b.

	
variable_names

	A list of strings giving the names of the variables being
constrained. (Used only for consistency checking.)

Origin tracking

	
class patsy.Origin(code, start, end)

	This represents the origin of some object in some string.

For example, if we have an object x1_obj that was produced by parsing
the x1 in the formula "y ~ x1:x2", then we conventionally keep
track of that relationship by doing:

x1_obj.origin = Origin("y ~ x1:x2", 4, 6)

Then later if we run into a problem, we can do:

raise PatsyError("invalid factor", x1_obj)

and we’ll produce a nice error message like:

PatsyError: invalid factor
 y ~ x1:x2
 ^^

Origins are compared by value, and hashable.

	
caretize(indent=0)

	Produces a user-readable two line string indicating the origin of
some code. Example:

y ~ x1:x2
 ^^

If optional argument ‘indent’ is given, then both lines will be
indented by this much. The returned string does not have a trailing
newline.

	
classmethod combine(origin_objs)

	Class method for combining a set of Origins into one large Origin
that spans them.

Example usage: if we wanted to represent the origin of the “x1:x2”
term, we could do Origin.combine([x1_obj, x2_obj]).

Single argument is an iterable, and each element in the iterable
should be either:

	An Origin object

	None

	An object that has a .origin attribute which fulfills the above
criteria.

Returns either an Origin object, or None.

	
relevant_code()

	Extracts and returns the span of the original code represented by
this Origin. Example: x1.

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	patsy 0.2.1 documentation

patsy.builtins API reference

This module defines some tools that are automatically made available
to code evaluated in formulas. You can also access it directly; use
from patsy.builtins import * to import the same variables that
formula code receives automatically.

	
patsy.builtins.I(x)

	The identity function. Simply returns its input unchanged.

Since Patsy’s formula parser ignores anything inside a function call
syntax, this is useful to ‘hide’ arithmetic operations from it. For
instance:

y ~ x1 + x2

has x1 and x2 as two separate predictors. But in:

y ~ I(x1 + x2)

we instead have a single predictor, defined to be the sum of x1 and
x2.

	
patsy.builtins.Q(name)

	A way to ‘quote’ variable names, especially ones that do not otherwise
meet Python’s variable name rules.

If x is a variable, Q("x") returns the value of x. (Note that
Q takes the string "x", not the value of x itself.) This
works even if instead of x, we have a variable name that would not
otherwise be legal in Python.

For example, if you have a column of data named weight.in.kg, then you
can’t write:

y ~ weight.in.kg

because Python will try to find a variable named weight, that has an
attribute named in, that has an attribute named kg. (And worse
yet, in is a reserved word, which makes this example doubly broken.)
Instead, write:

y ~ Q("weight.in.kg")

and all will be well. Note, though, that this requires embedding a Python
string inside your formula, which may require some care with your quote
marks. Some standard options include:

my_fit_function("y ~ Q('weight.in.kg')", ...)
my_fit_function('y ~ Q("weight.in.kg")', ...)
my_fit_function("y ~ Q(\"weight.in.kg\")", ...)

Note also that Q is an ordinary Python function, which means that you
can use it in more complex expressions. For example, this is a legal
formula:

y ~ np.sqrt(Q("weight.in.kg"))

	
class patsy.builtins.ContrastMatrix(matrix, column_suffixes)

	A simple container for a matrix used for coding categorical factors.

Attributes:

	
matrix

	A 2d ndarray, where each column corresponds to one column of the
resulting design matrix, and each row contains the entries for a single
categorical variable level. Usually n-by-n for a full rank coding or
n-by-(n-1) for a reduced rank coding, though other options are
possible.

	
column_suffixes

	A list of strings to be appended to the factor name, to produce the
final column names. E.g. for treatment coding the entries will look
like "[T.level1]".

	
class patsy.builtins.Treatment(reference=None)

	Treatment coding (also known as dummy coding).

This is the default coding.

For reduced-rank coding, one level is chosen as the “reference”, and its
mean behaviour is represented by the intercept. Each column of the
resulting matrix represents the difference between the mean of one level
and this reference level.

For full-rank coding, classic “dummy” coding is used, and each column of
the resulting matrix represents the mean of the corresponding level.

The reference level defaults to the first level, or can be specified
explicitly.

reduced rank
In [1]: dmatrix("C(a, Treatment)", balanced(a=3))
Out[1]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Treatment)[T.a2] C(a, Treatment)[T.a3]
 1 0 0
 1 1 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 'C(a, Treatment)' (columns 1:3)

full rank
In [2]: dmatrix("0 + C(a, Treatment)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
 C(a, Treatment)[a1] C(a, Treatment)[a2] C(a, Treatment)[a3]
 1 0 0
 0 1 0
 0 0 1
 Terms:
 'C(a, Treatment)' (columns 0:3)

Setting a reference level
In [3]: dmatrix("C(a, Treatment(1))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Treatment(1))[T.a1] C(a, Treatment(1))[T.a3]
 1 1 0
 1 0 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 'C(a, Treatment(1))' (columns 1:3)

In [4]: dmatrix("C(a, Treatment('a2'))", balanced(a=3))
Out[4]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Treatment('a2'))[T.a1] C(a, Treatment('a2'))[T.a3]
 1 1 0
 1 0 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 "C(a, Treatment('a2'))" (columns 1:3)

Equivalent to R contr.treatment. The R documentation suggests that
using Treatment(reference=-1) will produce contrasts that are
“equivalent to those produced by many (but not all) SAS procedures”.

	
code_with_intercept(levels)

	

	
code_without_intercept(levels)

	

	
class patsy.builtins.Poly(scores=None)

	Orthogonal polynomial contrast coding.

This coding scheme treats the levels as ordered samples from an underlying
continuous scale, whose effect takes an unknown functional form which is
Taylor-decomposed [https://en.wikipedia.org/wiki/Taylor_series] into the sum of a linear, quadratic, etc. components.

For reduced-rank coding, you get a linear column, a quadratic column,
etc., up to the number of levels provided.

For full-rank coding, the same scheme is used, except that the zero-order
constant polynomial is also included. I.e., you get an intercept column
included as part of your categorical term.

By default the levels are treated as equally spaced, but you can override
this by providing a value for the scores argument.

Examples:

Reduced rank
In [1]: dmatrix("C(a, Poly)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
 Intercept C(a, Poly).Linear C(a, Poly).Quadratic C(a, Poly).Cubic
 1 -0.67082 0.5 -0.22361
 1 -0.22361 -0.5 0.67082
 1 0.22361 -0.5 -0.67082
 1 0.67082 0.5 0.22361
 Terms:
 'Intercept' (column 0)
 'C(a, Poly)' (columns 1:4)

Full rank
In [2]: dmatrix("0 + C(a, Poly)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
 C(a, Poly).Constant C(a, Poly).Linear C(a, Poly).Quadratic
 1 -0.70711 0.40825
 1 -0.00000 -0.81650
 1 0.70711 0.40825
 Terms:
 'C(a, Poly)' (columns 0:3)

Explicit scores
In [3]: dmatrix("C(a, Poly([1, 2, 10]))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Poly([1, 2, 10])).Linear C(a, Poly([1, 2, 10])).Quadratic
 1 -0.47782 0.66208
 1 -0.33447 -0.74485
 1 0.81229 0.08276
 Terms:
 'Intercept' (column 0)
 'C(a, Poly([1, 2, 10]))' (columns 1:3)

This is equivalent to R’s contr.poly. (But note that in R, reduced
rank encodings are always dummy-coded, regardless of what contrast you
have set.)

	
code_with_intercept(levels)

	

	
code_without_intercept(levels)

	

	
class patsy.builtins.Sum(omit=None)

	Deviation coding (also known as sum-to-zero coding).

Compares the mean of each level to the mean-of-means. (In a balanced
design, compares the mean of each level to the overall mean.)

For full-rank coding, a standard intercept term is added.

One level must be omitted to avoid redundancy; by default this is the last
level, but this can be adjusted via the omit argument.

Warning

There are multiple definitions of ‘deviation coding’ in
use. Make sure this is the one you expect before trying to interpret
your results!

Examples:

Reduced rank
In [1]: dmatrix("C(a, Sum)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
 Intercept C(a, Sum)[S.a1] C(a, Sum)[S.a2] C(a, Sum)[S.a3]
 1 1 0 0
 1 0 1 0
 1 0 0 1
 1 -1 -1 -1
 Terms:
 'Intercept' (column 0)
 'C(a, Sum)' (columns 1:4)

Full rank
In [2]: dmatrix("0 + C(a, Sum)", balanced(a=4))
Out[2]:
DesignMatrix with shape (4, 4)
 C(a, Sum)[mean] C(a, Sum)[S.a1] C(a, Sum)[S.a2] C(a, Sum)[S.a3]
 1 1 0 0
 1 0 1 0
 1 0 0 1
 1 -1 -1 -1
 Terms:
 'C(a, Sum)' (columns 0:4)

Omit a different level
In [3]: dmatrix("C(a, Sum(1))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Sum(1))[S.a1] C(a, Sum(1))[S.a3]
 1 1 0
 1 -1 -1
 1 0 1
 Terms:
 'Intercept' (column 0)
 'C(a, Sum(1))' (columns 1:3)

In [4]: dmatrix("C(a, Sum('a1'))", balanced(a=3))
Out[4]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Sum('a1'))[S.a2] C(a, Sum('a1'))[S.a3]
 1 -1 -1
 1 1 0
 1 0 1
 Terms:
 'Intercept' (column 0)
 "C(a, Sum('a1'))" (columns 1:3)

This is equivalent to R’s contr.sum.

	
code_with_intercept(levels)

	

	
code_without_intercept(levels)

	

	
class patsy.builtins.Helmert

	Helmert contrasts.

Compares the second level with the first, the third with the average of
the first two, and so on.

For full-rank coding, a standard intercept term is added.

Warning

There are multiple definitions of ‘Helmert coding’ in
use. Make sure this is the one you expect before trying to interpret
your results!

Examples:

Reduced rank
In [1]: dmatrix("C(a, Helmert)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
 Intercept C(a, Helmert)[H.a2] C(a, Helmert)[H.a3] C(a, Helmert)[H.a4]
 1 -1 -1 -1
 1 1 -1 -1
 1 0 2 -1
 1 0 0 3
 Terms:
 'Intercept' (column 0)
 'C(a, Helmert)' (columns 1:4)

Full rank
In [2]: dmatrix("0 + C(a, Helmert)", balanced(a=4))
Out[2]:
DesignMatrix with shape (4, 4)
 Columns:
 ['C(a, Helmert)[H.intercept]',
 'C(a, Helmert)[H.a2]',
 'C(a, Helmert)[H.a3]',
 'C(a, Helmert)[H.a4]']
 Terms:
 'C(a, Helmert)' (columns 0:4)
 (to view full data, use np.asarray(this_obj))

This is equivalent to R’s contr.helmert.

	
code_with_intercept(levels)

	

	
code_without_intercept(levels)

	

	
class patsy.builtins.Diff

	Backward difference coding.

This coding scheme is useful for ordered factors, and compares the mean of
each level with the preceding level. So you get the second level minus the
first, the third level minus the second, etc.

For full-rank coding, a standard intercept term is added (which gives the
mean value for the first level).

Examples:

Reduced rank
In [1]: dmatrix("C(a, Diff)", balanced(a=3))
Out[1]:
DesignMatrix with shape (3, 3)
 Intercept C(a, Diff)[D.a1] C(a, Diff)[D.a2]
 1 -0.66667 -0.33333
 1 0.33333 -0.33333
 1 0.33333 0.66667
 Terms:
 'Intercept' (column 0)
 'C(a, Diff)' (columns 1:3)

Full rank
In [2]: dmatrix("0 + C(a, Diff)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
 C(a, Diff)[D.a1] C(a, Diff)[D.a2] C(a, Diff)[D.a3]
 1 -0.66667 -0.33333
 1 0.33333 -0.33333
 1 0.33333 0.66667
 Terms:
 'C(a, Diff)' (columns 0:3)

	
code_with_intercept(levels)

	

	
code_without_intercept(levels)

	

	
patsy.builtins.C(data, contrast=None, levels=None)

	Marks some data as being categorical, and specifies how to interpret
it.

This is used for three reasons:

	To explicitly mark some data as categorical. For instance, integer data
is by default treated as numerical. If you have data that is stored
using an integer type, but where you want patsy to treat each different
value as a different level of a categorical factor, you can wrap it in a
call to C to accomplish this. E.g., compare:

dmatrix("a", {"a": [1, 2, 3]})
dmatrix("C(a)", {"a": [1, 2, 3]})

	To explicitly set the levels or override the default level ordering for
categorical data, e.g.:

dmatrix("C(a, levels=["a2", "a1"])", balanced(a=2))

	To override the default coding scheme for categorical data. The
contrast argument can be any of:

	A ContrastMatrix object

	A simple 2d ndarray (which is treated the same as a ContrastMatrix
object except that you can’t specify column names)

	An object with methods called code_with_intercept and
code_without_intercept, like the built-in contrasts
(Treatment, Diff, Poly, etc.). See
Coding categorical data for more details.

	A callable that returns one of the above.

	
patsy.builtins.center(x)

	A stateful transform that centers input data, i.e., subtracts the mean.

If input has multiple columns, centers each column separately.

Equivalent to standardize(x, rescale=False)

	
patsy.builtins.standardize(x, center=True, rescale=True, ddof=0)

	A stateful transform that standardizes input data, i.e. it subtracts the
mean and divides by the sample standard deviation.

Either centering or rescaling or both can be disabled by use of keyword
arguments. The ddof argument controls the delta degrees of freedom when
computing the standard deviation (cf. numpy.std() [http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std]). The default of
ddof=0 produces the maximum likelihood estimate; use ddof=1 if you
prefer the square root of the unbiased estimate of the variance.

If input has multiple columns, standardizes each column separately.

Note

This function computes the mean and standard deviation using a
memory-efficient online algorithm, making it suitable for use with
large incrementally processed data-sets.

	
patsy.builtins.scale(*args, **kwargs)

	standardize(x, center=True, rescale=True, ddof=0)

A stateful transform that standardizes input data, i.e. it subtracts the
mean and divides by the sample standard deviation.

Either centering or rescaling or both can be disabled by use of keyword
arguments. The ddof argument controls the delta degrees of freedom when
computing the standard deviation (cf. numpy.std() [http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std]). The default of
ddof=0 produces the maximum likelihood estimate; use ddof=1 if you
prefer the square root of the unbiased estimate of the variance.

If input has multiple columns, standardizes each column separately.

Note

This function computes the mean and standard deviation using a
memory-efficient online algorithm, making it suitable for use with
large incrementally processed data-sets.

	
patsy.builtins.bs(x, df=None, knots=None, degree=3, include_intercept=False, lower_bound=None, upper_bound=None)

	Generates a B-spline basis for x, allowing non-linear fits. The usual
usage is something like:

y ~ 1 + bs(x, 4)

to fit y as a smooth function of x, with 4 degrees of freedom
given to the smooth.

	Parameters:	
	df – The number of degrees of freedom to use for this spline. The
return value will have this many columns. You must specify at least one
of df and knots.

	knots – The interior knots to use for the spline. If unspecified, then
equally spaced quantiles of the input data are used. You must specify at
least one of df and knots.

	degree – The degree of the spline to use.

	include_intercept – If True, then the resulting
spline basis will span the intercept term (i.e., the constant
function). If False (the default) then this will not be the case,
which is useful for avoiding overspecification in models that include
multiple spline terms and/or an intercept term.

	lower_bound – The lower exterior knot location.

	upper_bound – The upper exterior knot location.

A spline with degree=0 is piecewise constant with breakpoints at each
knot, and the default knot positions are quantiles of the input. So if you
find yourself in the situation of wanting to quantize a continuous
variable into equal-sized bins with a constant effect across each bin, you
can use bs(x, num_bins, degree=0).

Similarly, a spline with degree=1 is piecewise linear with breakpoints
at each knot.

The default is degree=3, which gives a cubic b-spline.

This is a stateful transform (for details see
Stateful transforms). If knots, lower_bound, or
upper_bound are not specified, they will be calculated from the data
and then the chosen values will be remembered and re-used for prediction
from the fitted model.

Using this function requires scipy be installed.

Note

This function is very similar to the R function of the same
name. In cases where both return output at all (e.g., R’s bs will
raise an error if degree=0, while patsy’s will not), they should
produce identical output given identical input and parameter settings.

Warning

I’m not sure on what the proper handling of points outside
the lower/upper bounds is, so for now attempting to evaluate a spline
basis at such points produces an error. Patches gratefully accepted.

New in version 0.2.0.

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	patsy 0.2.1 documentation

Changes

v0.2.1

	Fixed a nasty bug in missing value handling where, if missing values
were present, dmatrix(..., result_type="dataframe") would always
crash, and dmatrices("y ~ 1") would produce left- and right-hand
side matrices that had different numbers of rows. (As far as I can
tell, this bug could not possibly cause incorrect results, only
crashes, since it always involved the creation of matrices with
incommensurate shapes. Therefore there is no need to worry about the
accuracy of any analyses that were successfully performed with
v0.2.0.)

	Modified patsy/__init__.py to work around limitations in
py2exe/py2app/etc.

v0.2.0

Warnings:

	The lowest officially supported Python version is now 2.5. So far as
I know everything still works with Python 2.4, but as everyone else
has continued to drop support for 2.4, testing on 2.4 has become so
much trouble that I’ve given up.

New features:

	New support for automatically detecting and (optionally) removing
missing values (see NAAction).

	New stateful transform for B-spline regression:
bs(). (Requires scipy.)

	Added a core API to make it possible to run predictions on only a
subset of model terms. (This is particularly useful for
e.g. plotting the isolated effect of a single fitted spline term.)
See DesignMatrixBuilder.subset().

	LookupFactor now allows users to mark variables as
categorical directly.

	pandas.Categorical objects are now recognized as
representing categorical data and handled appropriately.

	Better error reporting for exceptions raised by user code inside
formulas. We now, whenever possible, tag the generated exception
with information about which factor’s code raised it, and use this
information to give better error reporting.

	EvalEnvironment.capture() now takes a reference argument,
to make it easier to implement new dmatrix()-like functions.

Other: miscellaneous doc improvements and bug fixes.

v0.1.0

First public release.

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	patsy 0.2.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 patsy	

 	
 	
 patsy.builtins	

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 Navigation

 	
 index

 	
 modules |

 	patsy 0.2.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V

_

 	

 	__eq__() (patsy.factor_protocol method)

 	__hash__() (patsy.factor_protocol method)

 	

 	__ne__() (patsy.factor_protocol method)

 	__new__() (patsy.DesignMatrix static method)

A

 	

 	add_outer_namespace() (patsy.EvalEnvironment method)

B

 	

 	balanced() (in module patsy)

 	bs() (in module patsy)

 	

 	(in module patsy.builtins)

 	

 	build_design_matrices() (in module patsy)

 	builder (patsy.DesignInfo attribute)

C

 	

 	C() (in module patsy.builtins)

 	capture() (patsy.EvalEnvironment class method)

 	caretize() (patsy.Origin method)

 	center() (in module patsy)

 	

 	(in module patsy.builtins)

 	code_with_intercept() (patsy.builtins.Diff method)

 	

 	(patsy.builtins.Helmert method)

 	(patsy.builtins.Poly method)

 	(patsy.builtins.Sum method)

 	(patsy.builtins.Treatment method)

 	code_without_intercept() (patsy.builtins.Diff method)

 	

 	(patsy.builtins.Helmert method)

 	(patsy.builtins.Poly method)

 	(patsy.builtins.Sum method)

 	(patsy.builtins.Treatment method)

 	coefs (patsy.LinearConstraint attribute)

 	

 	column_name_indexes (patsy.DesignInfo attribute)

 	column_names (patsy.DesignInfo attribute)

 	column_suffixes (patsy.builtins.ContrastMatrix attribute)

 	

 	(patsy.ContrastMatrix attribute)

 	combine() (patsy.Origin class method)

 	constants (patsy.LinearConstraint attribute)

 	ContrastMatrix (class in patsy)

 	

 	(class in patsy.builtins)

D

 	

 	demo_data() (in module patsy)

 	describe() (patsy.DesignInfo method)

 	design_info (patsy.DesignMatrix attribute)

 	

 	(patsy.DesignMatrixBuilder attribute)

 	design_matrix_builders() (in module patsy)

 	DesignInfo (class in patsy)

 	

 	DesignMatrix (class in patsy)

 	DesignMatrixBuilder (class in patsy)

 	Diff (class in patsy)

 	

 	(class in patsy.builtins)

 	dmatrices() (in module patsy)

 	dmatrix() (in module patsy)

E

 	

 	eval() (patsy.EvalEnvironment method)

 	

 	(patsy.factor_protocol method)

 	EvalEnvironment (class in patsy)

 	

 	EvalFactor (class in patsy)

F

 	

 	factor_protocol (class in patsy)

 	factors (patsy.Term attribute)

 	

 	from_array() (patsy.DesignInfo class method)

H

 	

 	handle_NA() (patsy.NAAction method)

 	

 	Helmert (class in patsy)

 	

 	(class in patsy.builtins)

I

 	

 	I() (in module patsy.builtins)

 	incr_dbuilder() (in module patsy)

 	incr_dbuilders() (in module patsy)

 	

 	INTERCEPT (in module patsy)

 	is_categorical_NA() (patsy.NAAction method)

 	is_numerical_NA() (patsy.NAAction method)

L

 	

 	lhs_termlist (patsy.ModelDesc attribute)

 	linear_constraint() (patsy.DesignInfo method)

 	

 	LinearConstraint (class in patsy)

 	LookupFactor (class in patsy)

M

 	

 	matrix (patsy.builtins.ContrastMatrix attribute)

 	

 	(patsy.ContrastMatrix attribute)

 	memorize_chunk() (patsy.factor_protocol method)

 	

 	(patsy.stateful_transform_protocol method)

 	memorize_finish() (patsy.factor_protocol method)

 	

 	(patsy.stateful_transform_protocol method)

 	

 	memorize_passes_needed() (patsy.factor_protocol method)

 	ModelDesc (class in patsy)

N

 	

 	NAAction (class in patsy)

 	name() (patsy.factor_protocol method)

 	

 	namespace (patsy.EvalEnvironment attribute)

O

 	

 	Origin (class in patsy)

P

 	

 	patsy (module)

 	patsy.builtins (module)

 	

 	PatsyError

 	Poly (class in patsy)

 	

 	(class in patsy.builtins)

Q

 	

 	Q() (in module patsy.builtins)

R

 	

 	relevant_code() (patsy.Origin method)

 	

 	rhs_termlist (patsy.ModelDesc attribute)

S

 	

 	scale() (in module patsy)

 	

 	(in module patsy.builtins)

 	slice() (patsy.DesignInfo method)

 	standardize() (in module patsy)

 	

 	(in module patsy.builtins)

 	stateful_transform() (in module patsy)

 	

 	stateful_transform_protocol (class in patsy)

 	subset() (patsy.DesignMatrixBuilder method)

 	Sum (class in patsy)

 	

 	(class in patsy.builtins)

T

 	

 	Term (class in patsy)

 	term_name_slices (patsy.DesignInfo attribute)

 	term_names (patsy.DesignInfo attribute)

 	term_slices (patsy.DesignInfo attribute)

 	

 	terms (patsy.DesignInfo attribute)

 	transform() (patsy.stateful_transform_protocol method)

 	Treatment (class in patsy)

 	

 	(class in patsy.builtins)

V

 	

 	variable_names (patsy.LinearConstraint attribute)

 Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v0.2.1

 	v0.2.0

 	v0.1.0

 _images/redundancy-1-br-arb.png
(@-):b

_images/math/ca6ebbff07afef1c5d61276af9582d0041735988.png

_images/math/0748716aa71972a15d07974d426b9bdc429dffa8.png
C1b

_static/minus.png

_images/math/5bc38d9f889ab323554bace84cf6c68ba07d9181.png
Cla * C2

_images/math/9054f16ac8d750f2760577e02e97b22f3651d830.png
G = Guum U Geateg

_images/math/532c846a482d179e2b63c5147142d803641c1175.png
Cip * C9p

_images/redundancy-ab.png

_images/math/f590b2357d811ad431215aae07e77bfd0d3b044e.png
Ym

search.html

 Navigation

 		
 index

 		
 modules |

 		patsy 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2012, Nathaniel J. Smith.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		v0.2.1

 		v0.2.0

 		v0.1.0

_static/comment-close.png

_static/up-pressed.png

_images/math/c7b1d6232fd16a03ccd1c3a6e98e5af024eea665.png

_images/formula-structure.png
formula

(ModelDesc)
Lefr—ha"dy W"a"" side
[Term, ..., Tern] [Term, ..., Tern]
[factor, ..., factor] [factor, ..., factor]

[factor, ..., factor] [factor, ..., factor]

_images/redundancy-1-ar-br.png

_images/redundancy-br.png

_static/down.png

_images/redundancy-ar.png

_static/comment.png

_images/math/83377632139ae4902212e45e3abe00b8d5607655.png
I = Fpyum U Feateg

_static/ajax-loader.gif

_images/math/37a9e7fca70e2dce829d902af2088735306bc1a3.png
15

_static/file.png

_images/math/88f6105f9dc5803501defd81e7e9f89ae6f729e7.png
Cla

_images/redundancy-1-ar-br-arbr.png

_images/math/b4433d0f30c542d158f3ddccfef149d58677a7bf.png
Cla * C2q

_images/term-containment.png
a:b
N
a b
N/

Intercept

_images/math/174fadd07fd54c9afe288e96558c92e0c1da733a.png

_images/math/d0e80c6b6a84ad4015ea436a915435d69edbdd96.png

_images/math/041c5249d7756bfedb9afc874880f375da8828b0.png
1

_static/down-pressed.png

_images/redundancy-1-br-arb-combined.png

_images/redundancy-b.png

_images/redundancy-1.png

_images/redundancy-1-ar.png

_static/comment-bright.png

_images/math/1e4bb5c0261c8d726157108cdd95cf6eb7bb6d46.png

_images/redundancy-abr.png
a:(b-)

_images/redundancy-a.png

_images/redundancy-arbr.png
(a=):(b-)

_static/up.png

_images/math/9ed15b8bd384f9ad0c216f15db676377d77f12ba.png
Yn

_static/plus.png

_images/math/ebbe6ff9ab7d7a9688de80e7b8c119806c43d5c3.png
Cip * C2q

_images/math/1879fa5d4d2addadc6cb50eff503b5a80f6fce0b.png

_images/redundancy-arb.png
(@-):b

_images/math/f23549300b8f143eb9abfc3e3bfe9febe75ca870.png

_images/redundancy-ar-arbr.png
=N
(@-):(b-)

_images/math/4a9d87b0a4accdde01d844073d6bf629f6fc28cf.png
C2%

_images/redundancy-arrow.png

_static/loading.gif

_images/redundancy-1-a-b-ab.png

_images/math/8caa00a71224e608e33ca971204dba4652d6dbc3.png
Coh

_images/math/e31584cdce0b50ee39c63081564f6e2ec5a7dcbf.png
I

_static/closelabel.png

_images/math/3580164b35797f33a9e2cfe24d35e199599b4ce9.png
eg 7 1)
Fiateg N Geateg

