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CHAPTER

ONE

OVERVIEW

“It’s only a model.”

patsy is a Python package for describing statistical models (especially linear models, or models that have a linear
component) and building design matrices. It is closely inspired by and compatible with the formula mini-language
used in R and S.

For instance, if we have some variable y, and we want to regress it against some other variables x, a, b, and the
interaction of a and b, then we simply write:

patsy.dmatrices("y ~ x + a + b + a:b", data)

and Patsy takes care of building appropriate matrices. Furthermore, it:

• Allows data transformations to be specified using arbitrary Python code: instead of x, we could have written
log(x), (x > 0), or even log(x) if x > 1e-5 else log(1e-5),

• Provides a range of convenient options for coding categorical variables, including automatic detection and re-
moval of redundancies,

• Knows how to apply ‘the same’ transformation used on original data to new data, even for tricky transformations
like centering or standardization (critical if you want to use your model to make predictions),

• Has an incremental mode to handle data sets which are too large to fit into memory at one time,

• Provides a language for symbolic, human-readable specification of linear constraint matrices,

• Has a thorough test suite (>97% statement coverage) and solid underlying theory, allowing it to correctly handle
corner cases that even R gets wrong, and

• Features a simple API for integration into statistical packages.

What Patsy won’t do is, well, statistics — it just lets you describe models in general terms. It doesn’t know or care
whether you ultimately want to do linear regression, time-series analysis, or fit a forest of decision trees, and it certainly
won’t do any of those things for you — it just gives a high-level language for describing which factors you want your
underlying model to take into account. It’s not suitable for implementing arbitrary non-linear models from scratch;
for that, you’ll be better off with something like Theano, SymPy, or just plain Python. But if you’re using a statistical
package that requires you to provide a raw model matrix, then you can use Patsy to painlessly construct that model
matrix; and if you’re the author of a statistics package, then I hope you’ll consider integrating Patsy as part of your
front-end.

Patsy’s goal is to become the standard high-level interface to describing statistical models in Python, regardless of
what particular model or library is being used underneath.
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1.1 Download

The current release may be downloaded from the Python Package index at

http://pypi.python.org/pypi/patsy/

Or the latest development version may be found in our Git repository:

git clone git://github.com/pydata/patsy.git

1.2 Requirements

Installing patsy requires:

• Python (version 2.4 or later; Python 3 is fully supported)

• NumPy

1.3 Installation

If you have pip installed, then a simple

pip install --upgrade patsy

should get you the latest version. Otherwise, download and unpack the source distribution, and then run

python setup.py install

1.4 Contact

Post your suggestions and questions directly to the pydata mailing list (pydata@googlegroups.com, gmane archive),
or to our bug tracker. You could also contact Nathaniel J. Smith directly, but really the mailing list is almost always a
better bet, because more people will see your query and others will be able to benefit from any answers you get.

1.5 License

2-clause BSD. See the file COPYING for details.

1.6 Users

We currently know of the following projects using Patsy to provide a high-level interface to their statistical code:

• Statsmodels

• (your project here!)

4 Chapter 1. Overview

http://pypi.python.org/pypi/patsy/
https://github.com/pydata/patsy
http://python.org/
http://numpy.scipy.org/
https://groups.google.com/group/pydata
mailto:pydata@googlegroups.com
http://news.gmane.org/gmane.comp.python.pydata
https://github.com/pydata/patsy/issues
mailto:njs@pobox.com
https://github.com/pydata/patsy/blob/master/COPYING
http://statsmodels.sourceforge.net/


CHAPTER

TWO

QUICKSTART

If you prefer to learn by diving in and getting your feet wet, then here are some cut-and-pasteable examples to play
with.

First, let’s import stuff and get some data to work with:

In [1]: import numpy as np

In [2]: from patsy import dmatrices, dmatrix, demo_data

In [3]: data = demo_data("a", "b", "x1", "x2", "y")

demo_data() gives us a mix of categorical and numerical variables:

In [1]: data
Out[1]:

{’a’: [’a1’, ’a1’, ’a2’, ’a2’, ’a1’, ’a1’, ’a2’, ’a2’],
’b’: [’b1’, ’b2’, ’b1’, ’b2’, ’b1’, ’b2’, ’b1’, ’b2’],
’x1’: array([ 1.76405235, 0.40015721, 0.97873798, 2.2408932 , 1.86755799,

-0.97727788, 0.95008842, -0.15135721]),
’x2’: array([-0.10321885, 0.4105985 , 0.14404357, 1.45427351, 0.76103773,

0.12167502, 0.44386323, 0.33367433]),
’y’: array([ 1.49407907, -0.20515826, 0.3130677 , -0.85409574, -2.55298982,

0.6536186 , 0.8644362 , -0.74216502])}

Of course Patsy doesn’t much care what sort of object you store your data in, so long as it can be indexed like a Python
dictionary, data[varname]. You may prefer to store your data in a pandas DataFrame, or a numpy record array...
whatever makes you happy.

Now, let’s generate design matrices suitable for regressing y onto x1 and x2.

In [1]: dmatrices("y ~ x1 + x2", data)
Out[1]:

(DesignMatrix with shape (8, 1)
y

1.49408
-0.20516
0.31307

-0.85410
-2.55299
0.65362
0.86444

-0.74217
Terms:

’y’ (column 0),
DesignMatrix with shape (8, 3)

5
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Intercept x1 x2
1 1.76405 -0.10322
1 0.40016 0.41060
1 0.97874 0.14404
1 2.24089 1.45427
1 1.86756 0.76104
1 -0.97728 0.12168
1 0.95009 0.44386
1 -0.15136 0.33367

Terms:
’Intercept’ (column 0)
’x1’ (column 1)
’x2’ (column 2))

The return value is a Python tuple containing two DesignMatrix objects, the first representing the left-hand side of
our formula, and the second representing the right-hand side. Notice that an intercept term was automatically added
to the right-hand side. These are just ordinary numpy arrays with some extra metadata and a fancy __repr__ method
attached, so we can pass them directly to a regression function like np.linalg.lstsq():

In [1]: outcome, predictors = dmatrices("y ~ x1 + x2", data)

In [2]: betas = np.linalg.lstsq(predictors, outcome)[0].ravel()

In [3]: for name, beta in zip(predictors.design_info.column_names, betas):
...: print("%s: %s" % (name, beta))
...:

Intercept: 0.579662344123
x1: 0.0885991903554
x2: -1.76479205551

Of course the resulting numbers aren’t very interesting, since this is just random data.

If you just want the design matrix alone, without the y values, use dmatrix() and leave off the y ~ part at the
beginning:

In [1]: dmatrix("x1 + x2", data)
Out[1]:

DesignMatrix with shape (8, 3)
Intercept x1 x2

1 1.76405 -0.10322
1 0.40016 0.41060
1 0.97874 0.14404
1 2.24089 1.45427
1 1.86756 0.76104
1 -0.97728 0.12168
1 0.95009 0.44386
1 -0.15136 0.33367

Terms:
’Intercept’ (column 0)
’x1’ (column 1)
’x2’ (column 2)

We’ll use dmatrix for the rest of the examples, since seeing the outcome matrix over and over would get boring. This
matrix’s metadata is stored in an extra attribute called .design_info, which is a DesignInfo object you can
explore at your leisure:

In [1]: d = dmatrix("x1 + x2", data)

In [2]: d.design_info.<TAB>
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patsy Documentation, Release 0.2.0

d.design_info.builder d.design_info.slice
d.design_info.column_name_indexes d.design_info.term_name_slices
d.design_info.column_names d.design_info.term_names
d.design_info.describe d.design_info.term_slices
d.design_info.linear_constraint d.design_info.terms

Usually the intercept is useful, but if we don’t want it we can get rid of it:

In [1]: dmatrix("x1 + x2 - 1", data)
Out[1]:

DesignMatrix with shape (8, 2)
x1 x2

1.76405 -0.10322
0.40016 0.41060
0.97874 0.14404
2.24089 1.45427
1.86756 0.76104
-0.97728 0.12168
0.95009 0.44386
-0.15136 0.33367
Terms:
’x1’ (column 0)
’x2’ (column 1)

We can transform variables using arbitrary Python code:

In [1]: dmatrix("x1 + np.log(x2 + 10)", data)
Out[1]:

DesignMatrix with shape (8, 3)
Intercept x1 np.log(x2 + 10)

1 1.76405 2.29221
1 0.40016 2.34282
1 0.97874 2.31689
1 2.24089 2.43836
1 1.86756 2.37593
1 -0.97728 2.31468
1 0.95009 2.34601
1 -0.15136 2.33541

Terms:
’Intercept’ (column 0)
’x1’ (column 1)
’np.log(x2 + 10)’ (column 2)

Notice that np.log is being pulled out of the environment where dmatrix() was called – np.log is accessible be-
cause we did import numpy as np up above. Any functions or variables that you could reference when calling
dmatrix() can also be used inside the formula passed to dmatrix(). For example:

In [1]: new_x2 = data["x2"] * 100

In [2]: dmatrix("new_x2")
Out[2]:

DesignMatrix with shape (8, 2)
Intercept new_x2

1 -10.32189
1 41.05985
1 14.40436
1 145.42735
1 76.10377
1 12.16750

7
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1 44.38632
1 33.36743

Terms:
’Intercept’ (column 0)
’new_x2’ (column 1)

Patsy has some transformation functions “built in”, that are automatically accessible to your code:

In [1]: dmatrix("center(x1) + standardize(x2)", data)
Out[1]:

DesignMatrix with shape (8, 3)
Intercept center(x1) standardize(x2)

1 0.87995 -1.21701
1 -0.48395 -0.07791
1 0.09463 -0.66885
1 1.35679 2.23584
1 0.98345 0.69899
1 -1.86138 -0.71844
1 0.06598 -0.00417
1 -1.03546 -0.24845

Terms:
’Intercept’ (column 0)
’center(x1)’ (column 1)
’standardize(x2)’ (column 2)

See patsy.builtins for a complete list of functions made available to formulas. You can also define your own
transformation functions in the ordinary Python way:

In [1]: def double(x):
...: return 2 * x
...:

Arithmetic transformations are also possible, but you’ll need to “protect” them by wrapping them in I(), so that Patsy
knows that you really do want + to mean addition:

In [1]: dmatrix("I(x1 + x2)", data) # compare to "x1 + x2"
Out[1]:

DesignMatrix with shape (8, 2)
Intercept I(x1 + x2)

1 1.66083
1 0.81076
1 1.12278
1 3.69517
1 2.62860
1 -0.85560
1 1.39395
1 0.18232

Terms:
’Intercept’ (column 0)
’I(x1 + x2)’ (column 1)

Note that while Patsy goes to considerable efforts to take in data represented using different Python data types and
convert them into a standard representation, all this work happens after any transformations you perform as part of
your formula. So, for example, if your data is in the form of numpy arrays, “+” will perform element-wise addition,
but if it is in standard Python lists, it will perform concatentation:

In [1]: dmatrix("I(x1 + x2)", {"x1": np.array([1, 2, 3]), "x2": np.array([4, 5, 6])})
Out[1]:

DesignMatrix with shape (3, 2)
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Intercept I(x1 + x2)
1 5
1 7
1 9

Terms:
’Intercept’ (column 0)
’I(x1 + x2)’ (column 1)

In [2]: dmatrix("I(x1 + x2)", {"x1": [1, 2, 3], "x2": [4, 5, 6]})
Out[2]:

DesignMatrix with shape (6, 2)
Intercept I(x1 + x2)

1 1
1 2
1 3
1 4
1 5
1 6

Terms:
’Intercept’ (column 0)
’I(x1 + x2)’ (column 1)

Patsy becomes particularly useful when you have categorical data. If you use a predictor that has a categorical type (e.g.
strings or bools), it will be automatically coded. Patsy automatically chooses an appropriate way to code categorical
data to avoid producing a redundant, overdetermined model.

If there is just one categorical variable alone, the default is to dummy code it:

In [1]: dmatrix("0 + a", data)
Out[1]:

DesignMatrix with shape (8, 2)
a[a1] a[a2]

1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1

Terms:
’a’ (columns 0:2)

But if you did that and put the intercept back in, you’d get a redundant model. So if the intercept is present, Patsy uses
a reduced-rank contrast code (treatment coding by default):

In [1]: dmatrix("a", data)
Out[1]:

DesignMatrix with shape (8, 2)
Intercept a[T.a2]

1 0
1 0
1 1
1 1
1 0
1 0
1 1
1 1

Terms:

9
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’Intercept’ (column 0)
’a’ (column 1)

The T. notation is there to remind you that these columns are treatment coded.

Interactions are also easy – they represent the cartesian product of all the factors involved. Here’s a dummy coding of
each combination of values taken by a and b:

In [1]: dmatrix("0 + a:b", data)
Out[1]:

DesignMatrix with shape (8, 4)
a[a1]:b[b1] a[a2]:b[b1] a[a1]:b[b2] a[a2]:b[b2]

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Terms:
’a:b’ (columns 0:4)

But interactions also know how to use contrast coding to avoid redundancy. If you have both main effects and inter-
actions in a model, then Patsy goes from lower-order effects to higher-order effects, adding in just enough columns
to produce a well-defined model. The result is that each set of columns measures the additional contribution of this
effect – just what you want for a traditional ANOVA:

In [1]: dmatrix("a + b + a:b", data)
Out[1]:

DesignMatrix with shape (8, 4)
Intercept a[T.a2] b[T.b2] a[T.a2]:b[T.b2]

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Terms:
’Intercept’ (column 0)
’a’ (column 1)
’b’ (column 2)
’a:b’ (column 3)

Since this is so common, there’s a convenient short-hand:

In [1]: dmatrix("a*b", data)
Out[1]:

DesignMatrix with shape (8, 4)
Intercept a[T.a2] b[T.b2] a[T.a2]:b[T.b2]

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
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1 1 1 1
Terms:
’Intercept’ (column 0)
’a’ (column 1)
’b’ (column 2)
’a:b’ (column 3)

Of course you can use other coding schemes too (or even define your own). Here’s orthogonal polynomial
coding:

In [1]: dmatrix("C(c, Poly)", {"c": ["c1", "c1", "c2", "c2", "c3", "c3"]})
Out[1]:

DesignMatrix with shape (6, 3)
Intercept C(c, Poly).Linear C(c, Poly).Quadratic

1 -0.70711 0.40825
1 -0.70711 0.40825
1 -0.00000 -0.81650
1 -0.00000 -0.81650
1 0.70711 0.40825
1 0.70711 0.40825

Terms:
’Intercept’ (column 0)
’C(c, Poly)’ (columns 1:3)

You can even write interactions between categorical and numerical variables. Here we fit two different slope coeffi-
cients for x1; one for the a1 group, and one for the a2 group:

In [1]: dmatrix("a:x1", data)
Out[1]:

DesignMatrix with shape (8, 3)
Intercept a[a1]:x1 a[a2]:x1

1 1.76405 0.00000
1 0.40016 0.00000
1 0.00000 0.97874
1 0.00000 2.24089
1 1.86756 0.00000
1 -0.97728 -0.00000
1 0.00000 0.95009
1 -0.00000 -0.15136

Terms:
’Intercept’ (column 0)
’a:x1’ (columns 1:3)

The same redundancy avoidance code works here, so if you’d rather have treatment-coded slopes (one slope for the
a1 group, and a second for the difference between the a1 and a2 group slopes), then you can request it like this:

# compare to the difference between "0 + a" and "1 + a"
In [1]: dmatrix("x1 + a:x1", data)
Out[1]:

DesignMatrix with shape (8, 3)
Intercept x1 a[T.a2]:x1

1 1.76405 0.00000
1 0.40016 0.00000
1 0.97874 0.97874
1 2.24089 2.24089
1 1.86756 0.00000
1 -0.97728 -0.00000
1 0.95009 0.95009
1 -0.15136 -0.15136

11
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Terms:
’Intercept’ (column 0)
’x1’ (column 1)
’a:x1’ (column 2)

And more complex expressions work too:

In [1]: dmatrix("C(a, Poly):center(x1)", data)
Out[1]:

DesignMatrix with shape (8, 3)
Intercept C(a, Poly).Constant:center(x1) C(a, Poly).Linear:center(x1)

1 0.87995 -0.62222
1 -0.48395 0.34220
1 0.09463 0.06691
1 1.35679 0.95939
1 0.98345 -0.69541
1 -1.86138 1.31620
1 0.06598 0.04666
1 -1.03546 -0.73218

Terms:
’Intercept’ (column 0)
’C(a, Poly):center(x1)’ (columns 1:3)
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CHAPTER

THREE

HOW FORMULAS WORK

Now we’ll describe the fully nitty-gritty of how formulas are parsed and interpreted. Here’s the picture you’ll want to
keep in mind:

Figure 3.1: The pieces that make up a formula.

Say we have a formula like:

y ~ a + a:b + np.log(x)

This overall thing is a formula, and it’s divided into a left-hand side, y, and a right-hand side, a + a:b +
np.log(x). (Sometimes you want a formula that has no left-hand side, and you can write that as ~ x1 + x2
or even x1 + x2.) Each side contains a list of terms separated by +; on the left there is one term, y, and on the
right, there are four terms: a and a:b and np.log(x), plus an invisible intercept term. And finally, each term is the
interaction of zero or more factors. A factor is the minimal, indivisible unit that each formula is built up out of; the
factors here are y, a, b, and np.log(x). Most of these terms have only one factor – for example, the term y is a
kind of trivial interaction between the factor y and, well... and nothing. There’s only one factor in that “interaction”.
The term a:b is an interaction between two factors, a and b. And the intercept term is an interaction between zero
factors. (This may seem odd, but it turns out that defining the zero-order interaction to produce a column of all ones
is very convenient, just like it turns out to be convenient to define the product of an empty list to be np.prod([])
== 1.)

Note: In the context of Patsy, the word factor does not refer specifically to categorical data. What we call a “factor”
can represent either categorical or numerical data. Think of factors like in multiplying factors together, not like in
factorial design. When we want to refer to categorical data, this manual and the Patsy API use the word “categorical”.

13
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To make this more concrete, here’s how you could manually construct the same objects that Patsy will construct if
given the above formula:

from patsy import EvalEnvironment, ModelDesc
env = EvalEnvironment.capture()
ModelDesc([Term([EvalFactor("y", env)])],

[Term([]),
Term([EvalFactor("a", env)]),
Term([EvalFactor("a", env), EvalFactor("b", env)]),
Term([EvalFactor("np.log(x)", env)])])

Compare to what you get from parsing the above formula:

ModelDesc.from_formula("y ~ a + a:b + np.log(x)", env)

ModelDesc represents an overall formula; it just takes two lists of Term objects, representing the left-hand side
and the right-hand side. And each Term object just takes a list of factor objects. In this case our factors are of type
EvalFactor, which evaluates arbitrary Python code, but in general any object that implements the factor protocol
will do – for details see Model specification for experts and computers.

Of course as a user you never have to actually touch ModelDesc, Term, or EvalFactor objects by hand – but it’s
useful to know that this lower layer exists in case you ever want to generate a formula programmatically, and to have
an image in your mind of what a formula really is.

3.1 The formula language

Now let’s talk about exactly how those magic formula strings are processed.

Since a term is nothing but a set of factors, and a model is nothing but two sets of terms, you can write any Patsy
model just using : to create interactions, + to join terms together into a set, and ~ to separate the left-hand side from
the right-hand side. But for convenience, Patsy also understands a number of other short-hand operators, and evaluates
them all using a full-fledged parser complete with robust error reporting, etc.

3.1.1 Operators

The built-in binary operators, ordered by precedence, are:

~ lowest precedence (binds most loosely)
+, -
*, /
:

** highest precedence (binds most tightly)

Of course, you can override the order of operations using parentheses. All operations are left-associative (so a - b
- c means the same as (a - b) - c, not a - (b - c)). Their meanings are as follows:

~ Separates the left-hand side and right-hand side of a formula. Optional. If not present, then the formula is considered
to contain a right-hand side only.

+ Takes the set of terms given on the left and the set of terms given on the right, and returns a set of terms that
combines both (i.e., it computes a set union). Note that this means that a + a is just a.

- Takes the set of terms given on the left and removes any terms which are given on the right (i.e., it computes a set
difference).

14 Chapter 3. How formulas work
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* a * b is short-hand for a + b + a:b, and is useful for the common case of wanting to include all interac-
tions between a set of variables while partitioning their variance between lower- and higher-order interactions.
Standard ANOVA models are of the form a * b * c * ....

/ This one is a bit quirky. a / b is shorthand for a + a:b, and is intended to be useful in cases where you want
to fit a standard sort of ANOVA model, but b is nested within a, so a*b doesn’t make sense. So far so good.
Also, if you have multiple terms on the right, then the obvious thing happens: a / (b + c) is equivalent to
a + a:b + a:c (/ is rightward distributive over +). But, if you have multiple terms on the left, then there is
a surprising special case: (a + b)/c is equivalent to a + b + a:b:c (and note that this is different from
what you’d get out of a/c + b/c – / is not leftward distributive over +). Again, this is motivated by the idea
of using this for nested variables. It doesn’t make sense for c to be nested within both a and b separately, unless
b is itself nested in a – but if that were true, then you’d write a/b/c instead. So if we see (a + b)/c, we
decide that a and b must be independent factors, but that c is nested within each combination of levels of a and
b, which is what a:b:c gives us. If this is confusing, then my apologies... S has been working this way for
>20 years, so it’s a bit late to change it now.

: This takes two sets of terms, and computes the interaction between each term on the left and each term on the
right. So, for example, (a + b):(c + d) is the same as a:c + a:d + b:c + b:d. Calculating the
interaction between two terms is also a kind of set union operation, but : takes the union of factors within two
terms, while + takes the union of two sets of terms. Note that this means that a:a is just a, and (a:b):(a:c)
is the same as a:b:c.

** This takes a set of terms on the left, and an integer n on the right, and computes the * of that set of terms with
itself n times. This is useful if you want to compute all interactions up to order n, but no further. Example:

(a + b + c + d) ** 3

is expanded to:

(a + b + c + d) * (a + b + c + d) * (a + b + c + d)

Note that an equivalent way to write this particular expression would be:

a*b*c*d - a:b:c:d

(Exercise: why?)

The parser also understands unary + and -, though they aren’t very useful. + is a no-op, and - can only be used in the
forms -1 (which means the same as 0) and -0 (which means the same as 1). See below for more on 0 and 1.

3.1.2 Factors and terms

So that explains how the operators work – the verbs in the formula language – but what about the nouns, the terms like
y and np.log(x) that are actually picking out bits of your data?

Individual factors are allowed to be arbitrary Python code. Scanning arbitrary Python code can be quite complicated,
but Patsy uses the official Python tokenizer that’s built into the standard library, so it’s able to do it robustly. There is
still a bit of a problem, though, since Patsy operators like + are also valid Python operators. When we see a +, how do
we know which interpretation to use?

The answer is that a Python factor begins whenever we see a token which

• is not a Patsy operator listed in that table up above, and

• is not a parentheses

And then the factor ends whenever we see a token which

• is a Patsy operator listed in that table up above, and

• it not enclosed in any kind of parentheses (where “any kind” includes regular, square, and curly bracket varieties)

3.1. The formula language 15
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This will be clearer with an example:

f(x1 + x2) + x3

First, we see f, which is not an operator or a parentheses, so we know this string begins with a Python-defined factor.
Then we keep reading from there. The next Patsy operator we see is the + in x1 + x2... but since at this point we
have seen the opening ( but not the closing ), we know that we’re inside parentheses and ignore it. Eventually we
come to the second +, and by this time we have seen the closing parentheses, so we know that this is the end of the
first factor and we interpret the + as a Patsy operator.

One side-effect of this is that if you do want to perform some arithmetic inside your formula object, you can hide
it from the Patsy parser by putting it inside a function call. To make this more convenient, Patsy provides a builtin
function I() that simply returns its input. (Hence the name: it’s the Identity function.) This means you can use I(x1
+ x2) inside a formula to represent the sum of x1 and x2.

Note: The above plays a bit fast-and-loose with the distinction between factors and terms. If you want to get more
technical, then given something like a:b, what’s happening is first that we create a factor a and then we package it up
into a single-factor term. And then we create a factor b, and we package it up into a single-factor term. And then we
evaluate the :, and compute the interaction between these two terms. When we encounter embedded Python code, it’s
always converted straight to a single-factor term before doing anything else.

3.1.3 Intercept handling

There are two special things about how intercept terms are handled inside the formula parser.

First, since an intercept term is an interaction of zero factors, we have no way to write it down using the parts of the
language described so far. Therefore, as a special case, the string 1 is taken to represent the intercept term.

Second, since intercept terms are almost always wanted and remembering to include them by hand all the time is quite
tedious, they are always included by default in the right-hand side of any formula. The way this is implemented is
exactly as if there is an invisible 1 + inserted at the beginning of every right-hand side.

Of course, if you don’t want an intercept, you can remove it again just like any other unwanted term, using the -
operator. The only thing that’s special about the 1 + is that it’s invisible; otherwise it acts just like any other term.
This formula has an intercept:

y ~ x

because it is processed like y ~ 1 + x.

This formula does not have an intercept:

y ~ x - 1

because it is processed like y ~ 1 + x - 1.

Of course if you want to be really explicit you can mention the intercept explicitly:

y ~ 1 + x

Once the invisible 1 + is added, this formula is processed like y ~ 1 + 1 + x, and as you’ll recall from the
definition of + above, adding the same term twice produces the same result as adding it just once.

For compatibility with S and R, we also allow the magic terms 0 and -1 which represent the “anti-intercept”. Adding
one of these terms has exactly the same effect as subtracting the intercept term, and subtracting one of these terms has
exactly the same effect as adding the intercept term. That means that all of these formulas are equivalent:
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y ~ x - 1
y ~ x + -1
y ~ -1 + x
y ~ 0 + x
y ~ x - (-0)

3.1.4 Explore!

The formula language is actually fairly simple once you get the hang of it, but if you’re ever in doubt as to what some
construction means, you can always ask Patsy how it expands.

Here’s some code to try out at the Python prompt to get started:

from patsy import EvalEnvironment, ModelDesc
# This captures the current Python environment. If a factor refers
# to a variable that doesn’t exist in the data (like np.log) then it
# will be looked for here.
env = EvalEnvironment.capture()
ModelDesc.from_formula("y ~ x", env)
ModelDesc.from_formula("y ~ x + x + x", env)
ModelDesc.from_formula("y ~ -1 + x", env)
ModelDesc.from_formula("~ -1", env)
ModelDesc.from_formula("y ~ a:b", env)
ModelDesc.from_formula("y ~ a*b", env)
ModelDesc.from_formula("y ~ (a + b + c + d) ** 2", env)
ModelDesc.from_formula("y ~ (a + b)/(c + d)", env)
ModelDesc.from_formula("np.log(x1 + x2) "

"+ (x + {6: x3, 8 + 1: x4}[3 * i])", env)

Sometimes it might be easier to read if you put the processed formula back into formula notation using
ModelDesc.describe():

desc = ModelDesc.from_formula("y ~ (a + b + c + d) ** 2", env)
desc.describe()

3.2 From terms to matrices

So at this point, you hopefully understand how a string is parsed into the ModelDesc structure shown in the figure at
the top of this page. And if you like you can also produce such structures directly without going through the formula
parser (see Model specification for experts and computers). But these terms and factors objects are still a fairly high-
level, symbolic representation of a model. Now we’ll talk about how they get converted into actual matrices with
numbers in.

There are two core operations here. The first takes a list of Term objects (a termlist) and some data, and pro-
duces a DesignMatrixBuilder. The second takes a DesignMatrixBuilder and some data, and pro-
duces a design matrix. In practice, these operations are implemented by design_matrix_builders() and
build_design_matrices(), respectively, and each of these functions is “vectorized” to process an arbitrary
number of matrices together in a single operation. But we’ll ignore that for now, and just focus on what happens to a
single termlist.

First, each individual factor is given a chance to set up any Stateful transforms it may have, and then is evaluated on
the data, to determine:

• Whether it is categorical or numerical

• If it is categorical, what levels it has

3.2. From terms to matrices 17
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• If it is numerical, how many columns it has.

Next, we sort terms based on the factors they contain. This is done by dividing terms into groups based on what
combination of numerical factors each one contains. The group of terms that have no numerical factors comes first,
then the rest of the groups in the order they are first mentioned within the term list. Then within each group, lower-order
interactions are ordered to come before higher-order interactions. (Interactions of the same order are left alone.)

Example:

In [1]: data = demo_data("a", "b", "x1", "x2")

In [2]: mat = dmatrix("x1:x2 + a:b + b + x1:a:b + a + x2:a:x1", data)

In [3]: mat.design_info.term_names
Out[3]: [’Intercept’, ’b’, ’a’, ’a:b’, ’x1:x2’, ’x2:a:x1’, ’x1:a:b’]

The non-numerical terms are Intercept, b, a, a:b and they come first, sorted from lower-order to higher-order. b comes
before a because it did in the original formula. Next come the terms that involved x1 and x2 together, and x1:x2 comes
before x2:a:x1 because it is a lower-order term. Finally comes the sole term involving x1 without x2.

Note: These ordering rules may seem a bit arbitrary, but will make more sense after our discussion of redundancy
below. Basically the motivation is that terms like b and a represent overlapping vector spaces, which means that the
presence of one will affect how the other is coded. So, we group to them together, to make these relationships easier to
see in the final analysis. And, a term like b represents a sub-space of a term like a:b, so if you’re including both terms
in your model you presumably want the variance represented by b to be partitioned out separately from the overall a:b
term, and for that to happen, b should come first in the final model.

After sorting the terms, we determine appropriate coding schemes for categorical factors, as described in the next sec-
tion. And that’s it – we now know exactly how to produce this design matrix, and design_matrix_builders()
packages this knowledge up into a DesignMatrixBuilder and returns it. To get the design matrix itself, we then
use build_design_matrices().

3.2.1 Redundancy and categorical factors

Here’s the basic idea about how Patsy codes categorical factors: each term that’s included means that we want our
outcome variable to be able to vary in a certain way – for example, the a:b in y ~ a:b means that we want our model
to be flexible enough to assign y a different value for every possible combination of a and b values. So what Patsy does
is build up a design matrix incrementally by working from left to right in the sorted term list, and for each term it adds
just the right columns needed to make sure that the model will be flexible enough to include the kind of variation this
term represents, while keeping the overall design matrix full rank. The result is that the columns associated with each
term always represent the additional flexibility that the models gains by adding that term, on top of the terms to its
left. Numerical factors are assumed not to be redundant with each other, and are always included “as is”; categorical
factors and interactions might be redundant, so Patsy chooses either full-rank or reduced-rank contrast coding for each
one to keep the overall design matrix at full rank.

Note: We’re only worried here about “structural redundancies”, those which occur inevitably no matter what the
particular values occur in your data set. If you enter two different factors x1 and x2, but set them to be numerically
equal, then Patsy will indeed produce a design matrix that isn’t full rank. Avoiding that is your problem.

Okay, now for the more the more detailed explanation. Each term represents a certain space of linear combinations of
column vectors:

• A numerical factor represents the vector space spanned by its columns.

• A categorical factor represents the vector space spanned by the columns you get if you apply “dummy coding”.
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• An interaction between two factors represents the vector space spanned by the element-wise products between
vectors in the first factor’s space with vectors in the second factor’s space. For example, if c1a and c1b are two
columns that form a basis for the vector space represented by factor f1, and likewise c2a and c2b are a basis for
the vector space represented by f2, then c1a ∗ c2a, c1b ∗ c2a, c1a ∗ c2b, c1b ∗ c2b is a basis for the vector space
represented by f1 : f2. Here the ∗ operator represents elementwise multiplication, like numpy *. (Exercise:
show that the choice of basis does not matter.)

• The empty interaction represents the space spanned by the identity element for elementwise multiplication, i.e.,
the all-ones “intercept” term.

So suppose that a is a categorical factor with two levels a1 and a2, and b is a categorical factor with two levels b1 and
b1. Then:

• a represents the space spanned by two vectors: one that has a 1 everywhere that a == "a1", and a zero
everywhere else, and another that’s similar but for a == "a2". (dummy coding)

• b works similarly

• and a:b represents the space spanned by four vectors: one that has a 1 everywhere that has a == "a1" and b
== "b1", another that has a 1 everywhere that has a1 == "a2" and b == "b1", etc. So if you are familiar
with ANOVA terminology, then these are not the kinds of interactions you are expecting! They represent a more
fundamental idea, that when we write:

y ~ a:b

we mean that the value of y can vary depending on every possible combination of a and b.

Notice that this means that the space spanned by the intercept term is always a vector subspace of the spaces spanned
by a and b, and these subspaces in turn are always subspaces of the space spanned by a:b. (Another way to say this is
that a and b are “marginal to” a:b.) The diagram on the right shows these relationships graphically. This reflects the
intuition that allowing y to depend on every combination of a and b gives you a more flexible model than allowing it
to vary based on just a or just b.

So what this means is that once you have a:b in your model, adding a or b or the intercept term won’t actually give
you any additional flexibility; the most they can do is to create redundancies that your linear algebra package will have
to somehow detect and remove later. These two models are identical in terms of how flexible they are:

y ~ 0 + a:b
y ~ 1 + a + b + a:b

And, indeed, we can check that the matrices that Patsy generates for these two formulas have identical column spans:

In [1]: data = demo_data("a", "b", "y")

In [2]: mat1 = dmatrices("y ~ 0 + a:b", data)[1]

In [3]: mat2 = dmatrices("y ~ 1 + a + b + a:b", data)[1]

In [4]: np.linalg.matrix_rank(mat1)
Out[4]: 4

In [5]: np.linalg.matrix_rank(mat2)
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Out[5]: 4

In [6]: np.linalg.matrix_rank(np.column_stack((mat1, mat2)))
Out[6]: 4

But, of course, their actual contents is different:

In [1]: mat1
Out[1]:
DesignMatrix with shape (8, 4)

a[a1]:b[b1] a[a2]:b[b1] a[a1]:b[b2] a[a2]:b[b2]
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Terms:
’a:b’ (columns 0:4)

In [2]: mat2
Out[2]:
DesignMatrix with shape (8, 4)

Intercept a[T.a2] b[T.b2] a[T.a2]:b[T.b2]
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Terms:
’Intercept’ (column 0)
’a’ (column 1)
’b’ (column 2)
’a:b’ (column 3)

This happens because Patsy is finding ways to avoid creating redundancy while coding each term. To understand how
this works, it’s useful to draw some pictures. Patsy has two general strategies for coding a categorical factor with n
levels. The first is to use a full-rank encoding with n columns. Here are some pictures of this style of coding:
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Obviously if we lay these images on top of each other, they’ll overlap, which corresponds to their overlap when
considered as vector spaces. If we try just putting them all into the same model, we get mud:

Patsy avoids this by using its second strategy: coding an n level factor in n− 1 columns which, critically, do not span
the intercept. We’ll call this style of coding reduced-rank, and use notation like a- to refer to factors coded this way.

Note: Each of the categorical coding schemes included in patsy come in both full-rank and reduced-rank flavours.
If you ask for, say, Poly coding, then this is the mechanism used to decide whether you get full- or reduced-rank
Poly coding.

For coding a there are two options:
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Figure 3.2: Naive 1 + a + b + a:b

And likewise for b:
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When it comes to a:b, things get more interesting: it can choose whether to use a full- or reduced-rank encoding
separately for each factor, leading to four choices overall:

3.2. From terms to matrices 23



patsy Documentation, Release 0.2.0

So when interpreting a formula like 1 + a + b + a:b, Patsy’s job is to pick and choose from the above pieces
and then assemble them together like a jigsaw puzzle.

Let’s walk through the formula 1 + a + b + a:b to see how this works. First it encodes the intercept:

In [1]: dmatrices("y ~ 1", data)[1]
Out[1]:
DesignMatrix with shape (8, 1)

Intercept
1
1
1
1
1
1
1
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1
Terms:
’Intercept’ (column 0)

Then it adds the a term. It has two choices, either the full-rank coding or the reduced rank a- coding. Using the full-
rank coding would overlap with the already-existing intercept term, though, so it chooses the reduced rank coding:

In [1]: dmatrices("y ~ 1 + a", data)[1]
Out[1]:
DesignMatrix with shape (8, 2)

Intercept a[T.a2]
1 0
1 0
1 1
1 1
1 0
1 0
1 1
1 1

Terms:
’Intercept’ (column 0)
’a’ (column 1)

The b term is treated similarly:
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In [1]: dmatrices("y ~ 1 + a + b", data)[1]
Out[1]:
DesignMatrix with shape (8, 3)

Intercept a[T.a2] b[T.b2]
1 0 0
1 0 1
1 1 0
1 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Terms:
’Intercept’ (column 0)
’a’ (column 1)
’b’ (column 2)

And finally, there are four options for the a:b term, but only one of them will fit without creating overlap:
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In [1]: dmatrices("y ~ 1 + a + b + a:b", data)[1]
Out[1]:
DesignMatrix with shape (8, 4)

Intercept a[T.a2] b[T.b2] a[T.a2]:b[T.b2]
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Terms:
’Intercept’ (column 0)
’a’ (column 1)
’b’ (column 2)
’a:b’ (column 3)

Patsy tries to use the fewest pieces possible to cover the space. For instance, in this formula, the a:b term is able to fill
the remaining space by using a single piece:
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In [1]: dmatrices("y ~ 1 + b + a:b", data)[1]
Out[1]:
DesignMatrix with shape (8, 4)

Intercept b[T.b2] a[T.a2]:b[b1] a[T.a2]:b[b2]
1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1
1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

Terms:
’Intercept’ (column 0)
’b’ (column 1)
’a:b’ (columns 2:4)

However, this is not always possible. In such cases, Patsy will assemble multiple pieces to code a single term 1, e.g.:

1 This is one of the places where Patsy improves on R, which produces incorrect output in this case (see Differences between R and Patsy
formulas).
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In [1]: dmatrices("y ~ 1 + a:b", data)[1]
Out[1]:
DesignMatrix with shape (8, 4)

Intercept b[T.b2] a[T.a2]:b[b1] a[T.a2]:b[b2]
1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1
1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

Terms:
’Intercept’ (column 0)
’a:b’ (columns 1:4)

Notice that the matrix entries and column names here are identical to those produced by the previous example, but the
association between terms and columns shown at the bottom is different.

In all of these cases, the final model spans the same space; a:b is included in the formula, and therefore the final matrix
must fill in the full a:b square. By including different combinations of lower-order interactions, we can control how
this overall variance is partitioned into distinct terms.

Exercise: create the similar diagram for a formula that includes a three-way interaction, like 1 + a +
a:b + a:b:c or 1 + a:b:c. Hint: it’s a cube. Then, send us your diagram for inclusion in this
documentation 2.

Finally, we’ve so far only discussed purely categorical interactions. Bringing numerical interactions into the mix
doesn’t make things much more complicated. Each combination of numerical factors is considered to be distinct from
all other combinations, so we divide all of our terms into groups based on which numerical factors they contain (just
like we do when sorting terms, as described above), and then within each group we separately apply the algorithm
described here to the categorical parts of each term.

2 Yes, I’m lazy. And shameless.
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3.3 Technical details

The actual algorithm Patsy uses to produce the above coding is very simple. Within the group of terms associated with
each combination of numerical factors, it works from left to right. For each term it encounters, it breaks the categorical
part of the interaction down into minimal pieces, e.g. a:b is replaced by 1 + (a-) + (b-) + (a-):(b-):

(Formally speaking, these “minimal pieces” consist of the set of all subsets of the original interaction.) Then, any of
the minimal pieces which were used by a previous term within this group are deleted, since they are redundant:
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and then we greedily recombine the pieces that are left by repeatedly merging adjacent pieces according to the rule
ANYTHING + ANYTHING : FACTOR- = ANYTHING : FACTOR:
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Exercise: Prove formally that the space spanned by ANYTHING + ANYTHING : FACTOR- is identical to
the space spanned by ANYTHING : FACTOR.

Exercise: Either show that the greedy algorithm here is produces optimal encodings in some sense (e.g.,
smallest number of pieces used), or else find a better algorithm. (Extra credit: implement your algorithm
and submit a pull request 3.)

Is this algorithm correct? A full formal proof would be too tedious for this reference manual, but here’s a sketch of the
analysis.

Recall that our goal is to maintain two invariants: the design matrix column space should include the space associated
with each term, and should avoid “structural redundancy”, i.e. it should be full rank on at least some data sets. It’s
easy to see the above algorithm will never “lose” columns, since the only time it eliminates a subspace is when it has
previously processed that exact subspace within the same design. But will it always detect all the redundancies that
are present?

3 Yes, still shameless.
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That is guaranteed by the following theorem:

Theorem: Let two sets of factors, F = f1, . . . , fn and G = g1, . . . , gm be given, and let F = Fnum ∪ Fcateg be the
numerical and categorical factors, respectively (and similarly for G = Gnum ∪ Gcateg. Then the space represented by
the interaction f1 : · · · : fn has a non-trivial intersection with the space represented by the interaction g1 : · · · : gm
whenever:

• Fnum = Gnum, and

• Fcateg ∩Gcateg 6= ∅

And, furthermore, whenever this condition does not hold, then there exists some assignment of values to the factors
for which the associated vector spaces have only a trivial intersection.

Exercise: Prove it.

Exercise: Show that given a sufficient number of rows, the set of factor assignments on which f1 : · · · : fn
represents a subspace of g1 : · · · : gn without the above conditions being satisfied is actually a zero set.

Corollary: Patsy’s strategy of dividing into groups by numerical factors, and then comparing all subsets of the remain-
ing categorical factors, allows it to precisely identify and avoid structural redundancies.

3.4 Footnotes
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CHAPTER

FOUR

CODING CATEGORICAL DATA

Patsy allows great flexibility in how categorical data is coded, via the function C(). C() marks some data as being
categorical (including data which would not automatically be treated as categorical, such as a column of integers),
while also optionally setting the preferred coding scheme and level ordering.

Let’s get some categorical data to work with:

In [1]: from patsy import dmatrix, demo_data, ContrastMatrix, Poly

In [2]: data = demo_data("a", nlevels=3)

In [3]: data
Out[3]: {’a’: [’a1’, ’a2’, ’a3’, ’a1’, ’a2’, ’a3’]}

As you know, simply giving Patsy a categorical variable causes it to be coded using the default Treatment coding
scheme. (Strings and booleans are treated as categorical by default.)

In [1]: dmatrix("a", data)
Out[1]:
DesignMatrix with shape (6, 3)

Intercept a[T.a2] a[T.a3]
1 0 0
1 1 0
1 0 1
1 0 0
1 1 0
1 0 1

Terms:
’Intercept’ (column 0)
’a’ (columns 1:3)

We can also alter the level ordering, which is useful for, e.g., Diff coding:

In [1]: l = ["a3", "a2", "a1"]

In [2]: dmatrix("C(a, levels=l)", data)
Out[2]:
DesignMatrix with shape (6, 3)

Intercept C(a, levels=l)[T.a2] C(a, levels=l)[T.a1]
1 0 1
1 1 0
1 0 0
1 0 1
1 1 0
1 0 0
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Terms:
’Intercept’ (column 0)
’C(a, levels=l)’ (columns 1:3)

But the default coding is just that – a default. The easiest alternative is to use one of the other built-in coding schemes,
like orthogonal polynomial coding:

In [1]: dmatrix("C(a, Poly)", data)
Out[1]:
DesignMatrix with shape (6, 3)

Intercept C(a, Poly).Linear C(a, Poly).Quadratic
1 -0.70711 0.40825
1 -0.00000 -0.81650
1 0.70711 0.40825
1 -0.70711 0.40825
1 -0.00000 -0.81650
1 0.70711 0.40825

Terms:
’Intercept’ (column 0)
’C(a, Poly)’ (columns 1:3)

There are a number of built-in coding schemes; for details you can check the API reference. But we aren’t restricted
to those. We can also provide a custom contrast matrix, which allows us to produce all kinds of strange designs:

In [1]: contrast = [[1, 2], [3, 4], [5, 6]]

In [2]: dmatrix("C(a, contrast)", data)
Out[2]:
DesignMatrix with shape (6, 3)

Intercept C(a, contrast)[custom0] C(a, contrast)[custom1]
1 1 2
1 3 4
1 5 6
1 1 2
1 3 4
1 5 6

Terms:
’Intercept’ (column 0)
’C(a, contrast)’ (columns 1:3)

In [3]: dmatrix("C(a, [[1], [2], [-4]])", data)
Out[3]:
DesignMatrix with shape (6, 2)

Intercept C(a, [[1], [2], [-4]])[custom0]
1 1
1 2
1 -4
1 1
1 2
1 -4

Terms:
’Intercept’ (column 0)
’C(a, [[1], [2], [-4]])’ (column 1)

Hmm, those [custom0], [custom1] names that Patsy auto-generated for us are a bit ugly looking. We can attach
names to our contrast matrix by creating a ContrastMatrix object, and make things prettier:

In [1]: contrast_mat = ContrastMatrix(contrast, ["[pretty0]", "[pretty1]"])
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In [2]: dmatrix("C(a, contrast_mat)", data)
Out[2]:
DesignMatrix with shape (6, 3)

Intercept C(a, contrast_mat)[pretty0] C(a, contrast_mat)[pretty1]
1 1 2
1 3 4
1 5 6
1 1 2
1 3 4
1 5 6

Terms:
’Intercept’ (column 0)
’C(a, contrast_mat)’ (columns 1:3)

And, finally, if we want to get really fancy, we can also define our own “smart” coding schemes like Poly. Just
define a class that has two methods, code_with_intercept() and code_without_intercept(). They
have identical signatures, taking a list of levels as their argument and returning a ContrastMatrix. Patsy will
automatically choose the appropriate method to call to produce a full-rank design matrix without redundancy; see
Redundancy and categorical factors for the full details on how Patsy makes this decision.

As an example, here’s a simplified version of the built-in Treatment coding object:

import numpy as np

class MyTreat(object):
def __init__(self, reference=0):

self.reference = reference

def code_with_intercept(self, levels):
return ContrastMatrix(np.eye(len(levels)),

["[My.%s]" % (level,) for level in levels])

def code_without_intercept(self, levels):
eye = np.eye(len(levels) - 1)
contrasts = np.vstack((eye[:self.reference, :],

np.zeros((1, len(levels) - 1)),
eye[self.reference:, :]))

suffixes = ["[MyT.%s]" % (level,) for level in
levels[:self.reference] + levels[self.reference + 1:]]

return ContrastMatrix(contrasts, suffixes)

And it can now be used just like the built-in methods:

# Full rank:
In [1]: dmatrix("0 + C(a, MyTreat)", data)
Out[1]:
DesignMatrix with shape (6, 3)

C(a, MyTreat)[My.a1] C(a, MyTreat)[My.a2] C(a, MyTreat)[My.a3]
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

Terms:
’C(a, MyTreat)’ (columns 0:3)

# Reduced rank:
In [2]: dmatrix("C(a, MyTreat)", data)
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Out[2]:
DesignMatrix with shape (6, 3)

Intercept C(a, MyTreat)[MyT.a2] C(a, MyTreat)[MyT.a3]
1 0 0
1 1 0
1 0 1
1 0 0
1 1 0
1 0 1

Terms:
’Intercept’ (column 0)
’C(a, MyTreat)’ (columns 1:3)

# With argument:
In [3]: dmatrix("C(a, MyTreat(2))", data)
Out[3]:
DesignMatrix with shape (6, 3)

Intercept C(a, MyTreat(2))[MyT.a1] C(a, MyTreat(2))[MyT.a2]
1 1 0
1 0 1
1 0 0
1 1 0
1 0 1
1 0 0

Terms:
’Intercept’ (column 0)
’C(a, MyTreat(2))’ (columns 1:3)
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CHAPTER

FIVE

STATEFUL TRANSFORMS

There’s a subtle problem that sometimes bites people when working with formulas. Suppose that I have some numer-
ical data called x, and I would like to center it before fitting. The obvious way would be to write:

y ~ I(x - np.mean(x)) # BROKEN! Don’t do this!

or, even better we could package it up into a function:

In [1]: def naive_center(x): # BROKEN! don’t use!
...: x = np.asarray(x)
...: return x - np.mean(x)
...:

and then write our formula like:

y ~ naive_center(x)

Why is this a bad idea? Let’s set up an example.

In [1]: import numpy as np

In [2]: from patsy import dmatrix, build_design_matrices, incr_dbuilder

In [3]: data = {"x": [1, 2, 3, 4]}

Now we can build a design matrix and see what we get:

In [1]: mat = dmatrix("naive_center(x)", data)

In [2]: mat
Out[2]:

DesignMatrix with shape (4, 2)
Intercept naive_center(x)

1 -1.5
1 -0.5
1 0.5
1 1.5

Terms:
’Intercept’ (column 0)
’naive_center(x)’ (column 1)

Those numbers look correct, and in fact they are correct. If all we’re going to do with this model is call dmatrix()
once, then everything is fine – which is what makes this problem so insidious.

Often we want to do more with a model than this. For instance, we might find some new data, and want to feed it into
our model to make predictions. To do this, though, we first need to reapply the same transformation, like so:
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In [1]: new_data = {"x": [5, 6, 7, 8]}

# Broken!
In [2]: build_design_matrices([mat.design_info.builder], new_data)[0]
Out[2]:

DesignMatrix with shape (4, 2)
Intercept naive_center(x)

1 -1.5
1 -0.5
1 0.5
1 1.5

Terms:
’Intercept’ (column 0)
’naive_center(x)’ (column 1)

So it’s clear what’s happened here – Patsy has centered the new data, just like it centered the old data. But if you think
about what this means statistically, it makes no sense. According to this, the new data point where x is 5 will behave
exactly like the old data point where x is 1, because they both produce the same input to the actual model.

The problem is what it means to apply “the same transformation”. Here, what we really want to do is to subtract the
mean of the original data from the new data.

Patsy’s solution is called a stateful transform. These look like ordinary functions, but they perform a bit of magic to
remember the state of the original data, and use it in transforming new data. Several useful stateful transforms are
included out of the box, including one called center().

Using center() instead of naive_center() produces the same correct result for our original matrix. It’s used
in exactly the same way:

In [1]: fixed_mat = dmatrix("center(x)", data)

In [2]: fixed_mat
Out[2]:

DesignMatrix with shape (4, 2)
Intercept center(x)

1 -1.5
1 -0.5
1 0.5
1 1.5

Terms:
’Intercept’ (column 0)
’center(x)’ (column 1)

But if we then feed in our new data, we also get out the correct result:

# Correct!
In [1]: build_design_matrices([fixed_mat.design_info.builder], new_data)[0]
Out[1]:

DesignMatrix with shape (4, 2)
Intercept center(x)

1 2.5
1 3.5
1 4.5
1 5.5

Terms:
’Intercept’ (column 0)
’center(x)’ (column 1)

Another situation where we need some stateful transform magic is when we are working with data that is too large
to fit into memory at once. To handle such cases, Patsy allows you to set up a design matrix while working our way
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incrementally through the data. But if we use naive_center() when building a matrix incrementally, then it
centers each chunk of data, not the data as a whole. (Of course, depending on how your data is distributed, this might
end up being just similar enough for you to miss the problem until it’s too late.)

In [1]: data_chunked = [{"x": data["x"][:2]},
...: {"x": data["x"][2:]}]
...:

In [2]: builder = incr_dbuilder("naive_center(x)", lambda: iter(data_chunked))

# Broken!
In [3]: np.row_stack([build_design_matrices([builder], chunk)[0]

...: for chunk in data_chunked])

...:
Out[3]:

array([[ 1. , -0.5],
[ 1. , 0.5],
[ 1. , -0.5],
[ 1. , 0.5]])

But if we use the proper stateful transform, this just works:

In [1]: builder = incr_dbuilder("center(x)", lambda: iter(data_chunked))

# Correct!
In [2]: np.row_stack([build_design_matrices([builder], chunk)[0]

...: for chunk in data_chunked])

...:
Out[2]:

array([[ 1. , -1.5],
[ 1. , -0.5],
[ 1. , 0.5],
[ 1. , 1.5]])

Note: Under the hood, the way this works is that incr_dbuilder() iterates through the data once to calculate
the mean, and then we use build_design_matrices() to iterate through it a second time creating our design
matrix. While taking two passes through a large data set may be slow, there’s really no other way to accomplish
what the user asked for. The good news is that Patsy is smart enough to make only the minimum number of passes
necessary. For example, in our example with naive_center() above, incr_dbuilder() would not have done
a full pass through the data at all. And if you have multiple stateful transforms in the same formula, then Patsy will
process them in parallel in a single pass.

And, of course, we can use the resulting builder for prediction as well:

# Correct!
In [1]: build_design_matrices([builder], new_data)[0]
Out[1]:

DesignMatrix with shape (4, 2)
Intercept center(x)

1 2.5
1 3.5
1 4.5
1 5.5

Terms:
’Intercept’ (column 0)
’center(x)’ (column 1)

In fact, Patsy’s stateful transform handling is clever enough that it can support arbitrary mixing of stateful transforms
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with other Python code. E.g., if center() and spline() were both stateful transforms, then even a silly a formula
like this will be handled 100% correctly:

y ~ I(spline(center(x1)) + center(x2))

However, it isn’t perfect – there are two things you have to be careful of. Let’s put them in red:

Warning: If you are unwise enough to ignore this section, write a function like naive_center above, and use it in
a formula, then Patsy will not notice. If you use that formula with incr_dbuilders() or for predictions, then
you will just silently get the wrong results. We have a plan to detect such cases, but it isn’t implemented yet (and
in any case can never be 100% reliable). So be careful!

Warning: Even if you do use a “real” stateful transform like center() or standardize(), still have to
make sure that Patsy can “see” that you are using such a transform. Currently the rule is that you must access the
stateful transform function using a simple, bare variable reference, without any dots or other lookups:

dmatrix("y ~ center(x)", data) # okay
asdf = patsy.center
dmatrix("y ~ asdf(x)", data) # okay
dmatrix("y ~ patsy.center(x)", data) # BROKEN! DON’T DO THIS!
funcs = {"center": patsy.center}
dmatrix("y ~ funcs[’center’](x)", data) # BROKEN! DON’T DO THIS!

5.1 Builtin stateful transforms

There are a number of builtin stateful transforms beyond center(); see stateful transforms in the API reference for
a complete list.

5.2 Defining a stateful transform

You can also easily define your own stateful transforms. The first step is to define a class which fulfills the stateful
transform protocol. The lifecycle of a stateful transform object is as follows:

1. An instance of your type will be constructed.

2. memorize_chunk() will be called one or more times.

3. memorize_finish() will be called once.

4. transform() will be called one or more times, on either the same or different data to what was initially
passed to memorize_chunk(). You can trust that any non-data arguments will be identical between calls to
memorize_chunk() and transform().

And here are the methods and call signatures you need to define:

class patsy.stateful_transform_protocol

__init__()
It must be possible to create an instance of the class by calling the constructor with no arguments.

memorize_chunk(*args, **kwargs)
Update any internal state, based on the data passed into memorize_chunk.

42 Chapter 5. Stateful transforms



patsy Documentation, Release 0.2.0

memorize_finish()
Do any housekeeping you want to do between the last call to memorize_chunk() and the first call to
transform(). For example, if you are computing some summary statistic that cannot be done incre-
mentally, then your memorize_chunk() method might just store the data that’s passed in, and then
memorize_finish() could compute the summary statistic and delete the stored data to free up the
associated memory.

transform(*args, **kwargs)
This method should transform the input data passed to it. It should be deterministic, and it should be
“point-wise”, in the sense that when passed an array it performs an independent transformation on each
data point that is not affected by any other data points passed to transform().

Then once you have created your class, pass it to stateful_transform() to create a callable stateful transform
object suitable for use inside or outside formulas.

Here’s a simple example of how you might implement a working version of center() (though it’s less robust and
featureful than the real builtin):

class MyExampleCenter(object):
def __init__(self):

self._total = 0
self._count = 0
self._mean = None

def memorize_chunk(self, x):
self._total += np.sum(x)
self._count += len(x)

def memorize_finish(self):
self._mean = self.total * 1. / self._count

def transform(self, x):
return x - self._mean

my_example_center = patsy.stateful_transform(MyExampleCenter)
print(my_example_center(np.array([1, 2, 3])))

But of course, if you come up with any useful ones, please let us know so we can incorporate them into patsy itself!
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CHAPTER

SIX

MODEL SPECIFICATION FOR EXPERTS
AND COMPUTERS

While the formula language is great for interactive model-fitting and exploratory data analysis, there are times when
we want a different or more systematic interface for creating design matrices. If you ever find yourself writing code
that pastes together bits of strings to create a formula, then stop! And read this chapter.

Our first option, of course, is that we can go ahead and write some code to construct our design matrices directly, just
like we did in the old days. Since this is supported directly by dmatrix() and dmatrices(), it also works with
any third-party library functions that use Patsy internally. Just pass in an array_like or a tuple (y_array_like,
X_array_like) in place of the formula.

In [1]: from patsy import dmatrix

In [2]: X = [[1, 10], [1, 20], [1, -2]]

In [3]: dmatrix(X)
Out[3]:
DesignMatrix with shape (3, 2)

x0 x1
1 10
1 20
1 -2
Terms:
’x0’ (column 0)
’x1’ (column 1)

By using a DesignMatrix with DesignInfo attached, we can also specify custom names for our custom matrix
(or even term slices and so forth), so that we still get the nice output and such that Patsy would otherwise provide:

In [1]: from patsy import DesignMatrix, DesignInfo

In [2]: design_info = DesignInfo(["Intercept!", "Not intercept!"])

In [3]: X_dm = DesignMatrix(X, design_info)

In [4]: dmatrix(X_dm)
Out[4]:
DesignMatrix with shape (3, 2)

Intercept! Not intercept!
1 10
1 20
1 -2

Terms:
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’Intercept!’ (column 0)
’Not intercept!’ (column 1)

Or if all we want to do is to specify column names, we could also just use a pandas.DataFrame:

In [1]: import pandas

In [2]: df = pandas.DataFrame([[1, 10], [1, 20], [1, -2]],
...: columns=["Intercept!", "Not intercept!"])
...:

In [3]: dmatrix(df)
Out[3]:
DesignMatrix with shape (3, 2)

Intercept! Not intercept!
1 10
1 20
1 -2

Terms:
’Intercept!’ (column 0)
’Not intercept!’ (column 1)

However, there is also a middle ground between pasting together strings and going back to putting together design
matrices out of string and baling wire. Patsy has a straightforward Python interface for representing the result of
parsing formulas, and you can use it directly. This lets you keep Patsy’s normal advantages – handling of categorical
data and interactions, predictions, term tracking, etc. – while using a nice high-level Python API. An example of
somewhere this might be useful is if, say, you had a GUI with a tick box next to each variable in your data set,
and wanted to construct a formula containing all the variables that had been checked, and letting Patsy deal with
categorical data handling. Or this would be the approach you’d take for doing stepwise regression, where you need to
programatically add and remove terms.

Whatever your particular situation, the strategy is this:

1. Construct some factor objects (probably using LookupFactor or EvalFactor

2. Put them into some Term objects,

3. Put the Term objects into two lists, representing the left- and right-hand side of your formula,

4. And then wrap the whole thing up in a ModelDesc.

(See How formulas work if you need a refresher on what each of these things are.)

In [1]: import numpy as np

In [2]: from patsy import (ModelDesc, EvalEnvironment, Term, EvalFactor,
...: LookupFactor, demo_data, dmatrix)
...:

In [3]: data = demo_data("a", "x")

In [4]: env = EvalEnvironment.capture()

# LookupFactor takes a dictionary key:
In [5]: a_lookup = LookupFactor("a")

# EvalFactor takes arbitrary Python code:
In [6]: x_transform = EvalFactor("np.log(x ** 2)", env)

# First argument is empty list for dmatrix; we would need to put

46 Chapter 6. Model specification for experts and computers



patsy Documentation, Release 0.2.0

# something there if we were calling dmatrices.
In [7]: desc = ModelDesc([],

...: [Term([a_lookup]),

...: Term([x_transform]),

...: Term([a_lookup, x_transform])])

...:

# Create the matrix (or pass ’desc’ to any statistical library
# function that uses patsy.dmatrix internally):
In [8]: dmatrix(desc, data)
Out[8]:
DesignMatrix with shape (6, 4)

a[a1] a[a2] np.log(x ** 2) a[T.a2]:np.log(x ** 2)
1 0 1.13523 0.00000
0 1 -1.83180 -1.83180
1 0 -0.04298 -0.00000
0 1 1.61375 1.61375
1 0 1.24926 0.00000
0 1 -0.04597 -0.04597

Terms:
’a’ (columns 0:2)
’np.log(x ** 2)’ (column 2)
’a:np.log(x ** 2)’ (column 3)

Notice that no intercept term is included. Implicit intercepts are a feature of the formula parser, not the underlying
represention. If you want an intercept, include the constant INTERCEPT in your list of terms (which is just sugar for
Term([])).

Note: Another option is to just pass your term lists directly to design_matrix_builders(), and skip the
ModelDesc entirely – all of the highlevel API functions like dmatrix() accept DesignMatrixBuilder ob-
jects as well as ModelDesc objects.

Example: say our data has 100 different numerical columns that we want to include in our design – and we also have
a few categorical variables with a more complex interaction structure. Here’s one solution:

def add_predictors(base_formula, extra_predictors):
# Interpret formula in caller’s environment:
env = EvalEnvironment.capture(1)
desc = ModelDesc.from_formula(base_formula, env)
# Using LookupFactor here ensures that everything will work correctly even
# if one of the column names in extra_columns is named like "weight.in.kg"
# or "sys.exit()" or "LittleBobbyTables()".
desc.rhs_termlist += [Term([LookupFactor(p)]) for p in extra_predictors]
return desc

In [1]: extra_predictors = ["x%s" % (i,) for i in range(10)]

In [2]: desc = add_predictors("np.log(y) ~ a*b + c:d", extra_predictors)

In [3]: desc.describe()
Out[3]: ’np.log(y) ~ a + b + a:b + c:d + x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9’

6.1 The factor protocol

If LookupFactor and EvalFactor aren’t enough for you, then you can define your own factor class.
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The full interface looks like this:

class patsy.factor_protocol

name()
This must return a short string describing this factor. It will be used to create column names, among other
things.

__eq__(obj)
__ne__(obj)
__hash__()

If your factor will ever contain categorical data or participate in interactions, then it’s important to make
sure you’ve defined __eq__() and __ne__() and that your type is hashable. These methods will
determine which factors Patsy considers equal for purposes of redundancy elimination.

memorize_passes_needed(state)
Return the number of passes through the data that this factor will need in order to set up any Stateful
transforms.

If you don’t want to support stateful transforms, just return 0. In this case, memorize_chunk() and
memorize_finish() will never be called.

state is an (initially) empty dict which is maintained by the builder machinery, and that we can do whatever
we like with. It will be passed back in to all memorization and evaluation methods.

memorize_chunk(state, which_pass, data)
Called repeatedly with each ‘chunk’ of data produced by the data_iter_maker passed to
design_matrix_builders().

state is the state dictionary. which_pass will be zero on the first pass through the data, and eventually reach
the value you returned from memorize_passes_needed(), minus one.

Return value is ignored.

memorize_finish(state, which_pass)
Called once after each pass through the data.

Return value is ignored.

eval(state, data)
Evaluate this factor on the given data. Return value should ideally be a 1-d or 2-d array or
Categorical() object, but this will be checked and converted as needed.

Warning: Do not store evaluation-related state in attributes of your factor object! The same factor object may
appear in two totally different formulas, or if you have two factor objects which compare equally, then only one
may be executed, and which one this is may vary randomly depending on how build_design_matrices()
is called! Use only the state dictionary for storing state.

The lifecycle of a factor object therefore looks like:

1. Initialized.

2. memorize_passes_needed() is called.

3. for i in range(passes_needed):

(a) memorize_chunk() is called one or more times

(b) memorize_finish() is called

4. eval() is called zero or more times.
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6.2 Alternative formula implementations

Even if you hate Patsy’s formulas all together, to the extent that you’re going to go and implement your own competing
mechanism for defining formulas, you can still Patsy-based interfaces. Unfortunately, this isn’t quite as clean as we’d
like, because for now there’s no way to define a custom DesignMatrixBuilder. So you do still have to go
through Patsy’s formula-building machinery. But, this machinery simply passes numerical data through unchanged,
so in extremis you can:

• Define a special factor object that simply defers to your existing machinery

• Define the magic __patsy_get_model_desc__ method on your formula object. dmatrix() and friends
check for the presence of this method on any object that is passed in, and if found, it is called (passing in the
EvalEnvironment), and expected to return a ModelDesc. And your ModelDesc can, of course, include
your special factor object(s).

Put together, it looks something like this:

class MyAlternativeFactor(object):
# A factor object that simply returns the design
def __init__(self, alternative_formula, side):

self.alternative_formula = alternative_formula
self.side = side

def name(self):
return self.side

def memorize_passes_needed(self, state):
return 0

def eval(self, state, data):
return self.alternative_formula.get_matrix(self.side, data)

class MyAlternativeFormula(object):
...

def __patsy_get_model_desc__(self, eval_env):
return ModelDesc([Term([MyAlternativeFactor(self, side="left")])],

[Term([MyAlternativeFactor(self, side="right")])],

my_formula = MyAlternativeFormula(...)
dmatrix(my_formula, data)

The only downside to this approach is that you can’t control the names of individual columns. (A workaround would
be to create multiple terms each with its own factor that returns a different pieces of your overall matrix.) If this is a
problem for you, though, then let’s talk – we can probably work something out.
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CHAPTER

SEVEN

USING PATSY IN YOUR LIBRARY

Our goal is to make Patsy the de facto standard for describing models in Python, regardless of the underlying package
in use – just as formulas are the standard interface to all R packages. Therefore we’ve tried to make it as easy as
possible for you to build Patsy support into your libraries.

Patsy is a good houseguest:

• Pure Python, no compilation necessary.

• Exhaustive tests (>98% statement coverage at time of writing) and documentation (you’re looking at it).

• No dependencies besides numpy (and we even test against numpy 1.2.1, as distributed by RHEL 5).

• Tested and supported on every version of Python since 2.4.

So you can be pretty confident that adding a dependency on Patsy won’t create much hassle for your users.

And, of course, the fundamental design is very conservative – the formula mini-language in S was first described in
Chambers and Hastie (1992), more than two decades ago. It’s still in heavy use today in R, which is one of the most
popular environments for statistical programming. Many of your users may already be familiar with it. So we can be
pretty certain that it will hold up to real-world usage.

7.1 Using the high-level interface

If you have a function whose signature currently looks like this:

def mymodel2(X, y, ...):
...

or this:

def mymodel1(X, ...):
...

then adding Patsy support is extremely easy (though of course like any other API change, you may have to deprecate
the old interface, or provide two interfaces in parallel, depending on your situation). Just write something like:

def mymodel2_patsy(formula_like, data={}, ...):
y, X = patsy.dmatrices(formula_like, data, 1)
...

or:

def mymodel1_patsy(formula_like, data={}, ...):
X = patsy.dmatrix(formula_like, data, 1)
...
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(See dmatrices() and dmatrix() for details.) This won’t force your users to switch to formulas immediately;
they can replace code that looks like this:

X, y = build_matrices_laboriously()
result = mymodel2(X, y, ...)
other_result = mymodel1(X, ...)

with code like this:

X, y = build_matrices_laboriously()
result = mymodel2((y, X), data=None, ...)
other_result = mymodel1(X, data=None, ...)

Of course in the long run they might want to throw away that build_matrices_laboriously() function and
start using formulas, but they aren’t forced to just to start using your new interface.

7.1.1 Working with metadata

Once you’ve started using Patsy to handle formulas, you’ll probably want to take advantage of the metadata that Patsy
provides, so that you can display regression coefficients by name and so forth. Design matrices processed by Patsy
always have a .design_info attribute which contains lots of information about the design: see DesignInfo for
details.

7.1.2 Predictions

Another nice feature is making predictions on new data. But this requires that we can take in new data, and transform
it to create a new X matrix. Or if we want to compute the likelihood of our model on new data, we need both new X
and y matrices.

This is also easily done with Patsy – first fetch the relevant DesignMatrixBuilder objects by doing
input_data.design_info.builder, and then pass them to build_design_matrices() along with the
new data.

7.1.3 Example

Here’s a simplified class for doing ordinary least-squares regression, demonstrating the above techniques:

Warning: This code has not been validated for numerical correctness.

import numpy as np
from patsy import dmatrices, build_design_matrices

class LM(object):
"""An example ordinary least squares linear model class, analogous to R’s
lm() function. Don’t use this in real life, it isn’t properly tested."""
def __init__(self, formula_like, data={}):

y, x = dmatrices(formula_like, data, 1)
self.nobs = x.shape[0]
self.betas, self.rss, _, _ = np.linalg.lstsq(x, y)
self._y_design_info = y.design_info
self._x_design_info = x.design_info

def __repr__(self):
summary = ("Ordinary least-squares regression\n"
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" Model: %s ~ %s\n"
" Regression (beta) coefficients:\n"
% (self._y_design_info.describe(),

self._x_design_info.describe()))
for name, value in zip(self._x_design_info.column_names, self.betas):

summary += " %s: %0.3g\n" % (name, value[0])
return summary

def predict(self, new_data):
(new_x,) = build_design_matrices([self._x_design_info.builder],

new_data)
return np.dot(new_x, self.betas)

def loglik(self, new_data):
(new_y, new_x) = build_design_matrices([self._y_design_info.builder,

self._x_design_info.builder],
new_data)

new_pred = np.dot(new_x, self.betas)
sigma2 = self.rss / self.nobs
# It’d be more elegant to use scipy.stats.norm.logpdf here, but adding
# a dependency on scipy makes the docs build more complicated:
Z = -0.5 * np.log(2 * np.pi * sigma2)
return Z + -0.5 * (new_y - new_x) ** 2/sigma2

And here’s how it can be used:

In [1]: from patsy import demo_data

In [2]: data = demo_data("x", "y", "a")

# Old and boring approach (but it still works):
In [3]: X = np.column_stack(([1] * len(data["y"]), data["x"]))

In [4]: LM((data["y"], X))
Out[4]:
Ordinary least-squares regression

Model: y0 ~ x0 + x1
Regression (beta) coefficients:
x0: 0.677
x1: -0.217

# Fancy new way:
In [5]: m = LM("y ~ x", data)

In [6]: m
Out[6]:
Ordinary least-squares regression

Model: y ~ 1 + x
Regression (beta) coefficients:
Intercept: 0.677
x: -0.217

In [7]: m.predict({"x": [10, 20, 30]})
Out[7]:
array([[-1.48944498],

[-3.65620297],
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[-5.82296096]])

In [8]: m.loglik(data)
Out[8]:
array([[ -0.28884193, -1.46289596],

[ -2.64235743, -0.8254485 ],
[ -2.44930737, -2.36666465],
[ -0.90233651, -6.24317017],
[ -1.58762894, -5.56817766],
[ -0.65148056, -10.80114045]])

In [9]: m.loglik({"x": [10, 20, 30], "y": [-1, -2, -3]})
Out[9]:
array([[ -7.39939265, -215.51261221],

[ -16.29311998, -861.19721649],
[ -28.74433824, -1937.33822362]])

# Your users get support for categorical predictors for free:
In [10]: LM("y ~ a", data)
Out[10]:
Ordinary least-squares regression

Model: y ~ 1 + a
Regression (beta) coefficients:
Intercept: 0.33
a[T.a2]: 0.241

# And variable transformations too:
In [11]: LM("y ~ np.log(x ** 2)", data)
Out[11]:
Ordinary least-squares regression

Model: y ~ 1 + np.log(x ** 2)
Regression (beta) coefficients:
Intercept: 0.399
np.log(x ** 2): 0.148

7.1.4 Other cool tricks

If you want to compute ANOVAs, then check out DesignInfo.term_name_slices,
DesignInfo.slice().

If you support linear hypothesis tests or otherwise allow your users to specify linear constraints on model parameters,
consider taking advantage of DesignInfo.linear_constraint().

7.2 Extending the formula syntax

The above documentation assumes that you have a relatively simple model that can be described by one or two
matrices (plus whatever other arguments you take). This covers many of the most popular models, but it’s definitely
not sufficient for every model out there.

Internally, Patsy is designed to be very flexible – for example, it’s quite straightforward to add custom operators to the
formula parser, or otherwise extend the formula evaluation machinery. (Heck, it only took an hour or two to repurpose
it for a totally different purpose, parsing linear constraints.) But extending Patsy in a more fundamental way this will
require just a wee bit more complicated API than just calling dmatrices(), and for this initial release, we’ve been
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busy enough getting the basics working that we haven’t yet taken the time to pin down a public extension API we can
support.

So, if you want something fancier – please give us a nudge, it’s entirely likely we can work something out.
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CHAPTER

EIGHT

DIFFERENCES BETWEEN R AND
PATSY FORMULAS

Patsy has a very high degree of compatibility with R. Almost any formula you would use in R will also work in Patsy
– with a few caveats.

Note: All R quirks described herein were last verified with R 2.15.0.

Differences from R:

• Most obviously, we both support using arbitrary code to perform variable transformations, but in Patsy this code
is written in Python, not R.

• Patsy has no %in%. In R, a %in% b is identical to b:a. Patsy only supports the b:a version of this syntax.

• In Patsy, only ** can be used for exponentiation. In R, both ^ and ** can be used for exponentiation, i.e.,
you can write either (a + b)^2 or (a + b)**2. In Patsy (as in Python generally), only ** indicates
exponentiation; ^ is ignored by the parser (and if present, will be interpreted as a call to the Python binary XOR
operator).

• In Patsy, the left-hand side of a formula uses the same evaluation rules as the right-hand side. In R, the left hand
side is treated as R code, so a formula like y1 + y2 ~ x1 + x2 actually regresses the sum of y1 and y2
onto the set of predictors x1 and x2. In Patsy, the only difference between the left-hand side and the right-hand
side is that there is no automatic intercept added to the left-hand side. (In this regard Patsy is similar to the R
enhanced formula package Formula.)

• Patsy produces a different column ordering for formulas involving numeric predictors. In R, there are two
rules for term ordering: first, lower-order interactions are sorted before higher-order interactions, and second,
interactions of the same order are listed in whatever order they appeared in the formula. In Patsy, we add another
rule: terms are first grouped together based on which numeric factors they include. Then within each group, we
use the same ordering as R.

• Patsy has more rigorous handling of the presence or absence of the intercept term. In R, the rules for when
deciding whether to include an intercept are somewhat idiosyncratic and can ignore things like parentheses. To
understand the difference, first consider the formula a + (b - a). In both Patsy and R, we first evaluate the
(b - a) part; since there is no a term to remove, this simplifies to just b. We then evaluate a + b: the end
result is a model which contains an a term in it.

Now consider the formula 1 + (b - 1). In Patsy, this is analogous to the case above: first (b - 1) is
reduced to just b, and then 1 + b produces a model with intercept included. In R, the parentheses are ignored,
and 1 + (b - 1) gives a model that does not include the intercept.

This can be slightly more confusing when it comes to the implicit intercept term. In Patsy, this is handled exactly
as if the right-hand side of each formula has an invisible "1 +" inserted at the beginning. Therefore in Patsy,
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these formulas are different:

# Python:
dmatrices("y ~ b - 1") # equivalent to 1 + b - 1: no intercept
dmatrices("y ~ (b - 1)") # equivalent to 1 + (b - 1): has intercept

In R, these two formulas are equivalent.

• Patsy has a more accurate algorithm for deciding whether to use a full- or reduced-rank coding scheme for cat-
egorical factors. There are two situations in which R’s coding algorithm for categorical variables can become
confused and produce over- or under-specified model matrices. Patsy, so far as we are aware, produces cor-
rectly specified matrices in all cases. It’s unlikely that you’ll run into these in actual usage, but they’re worth
mentioning. To illustrate, let’s define a and b as categorical predictors, each with 2 levels:

# R:
> a <- factor(c("a1", "a1", "a2", "a2"))
> b <- factor(c("b1", "b2", "b1", "b2"))

The first problem occurs for formulas like 1 + a:b. This produces a model matrix with rank 4, just like many
other formulas that include a:b, such as 0 + a:b, 1 + a + a:b, and a*b:

# R:
> qr(model.matrix(~ 1 + a:b))$rank
[1] 4

However, the matrix produced for this formula has 5 columns, meaning that it contains redundant overspecifi-
cation:

# R:
> mat <- model.matrix(~ 1 + a:b)
> ncol(mat)
[1] 5

The underlying problem is that R’s algorithm does not pay attention to ‘non-local’ redundancies – it will adjust
its coding to avoid a redundancy between two terms of degree-n, or a term of degree-n and one of degree-(n+1),
but it is blind to a redundancy between a term of degree-n and one of degree-(n+2), as we have here.

Patsy’s algorithm has no such limitation:

# Python:
In [1]: a = ["a1", "a1", "a2", "a2"]

In [2]: b = ["b1", "b2", "b1", "b2"]

In [3]: mat = dmatrix("1 + a:b")

In [4]: mat.shape[1]
Out[4]: 4

To produce this result, it codes a:b uses the same columns that would be used to code b + a:b in the formula
"1 + b + a:b".

The second problem occurs for formulas involving numeric predictors. Effectively, when determining coding
schemes, R assumes that all factors are categorical. So for the formula 0 + a:c + a:b, R will notice that
if it used a full-rank coding for the c and b factors, then both terms would be collinear with a, and thus each
other. Therefore, it encodes c with a full-rank encoding, and uses a reduced-rank encoding for b. (And the 0 +
lets it avoid the previous bug.) So far, so good.

But now consider the formula 0 + a:x + a:b, where x is numeric. Here, a:x and a:bwill not be collinear,
even if we do use a full-rank encoding for b. Therefore, we should use a full-rank encoding for b, and produce
a model matrix with 6 columns. But in fact, R gives us only 4:
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# R:
> x <- c(1, 2, 3, 4)
> mat <- model.matrix(~ 0 + a:x + a:b)
> ncol(mat)
[1] 4

The problem is that it cannot tell the difference between 0 + a:x + a:b and 0 + a:c + a:b: it uses the
same coding for both, whether it’s appropriate or not.

(The alert reader might wonder whether this bug could be triggered by a simpler formula, like 0 + x + b. It
turns out that R’s code do_modelmatrix function has a special-case where for first-order interactions only,
it will peek at the type of the data before deciding on a coding scheme.)

Patsy always checks whether each factor is categorical or numeric before it makes coding decisions, and thus
handles this case correctly:

# Python:
In [1]: x = [1, 2, 3, 4]

In [2]: mat = dmatrix("0 + a:x + a:b")

In [3]: mat.shape[1]
Out[3]: 6
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CHAPTER

NINE

PYTHON 2 VERSUS PYTHON 3

The biggest difference between Python 2 and Python 3 is in their string handling, and this is particularly relevant to
Patsy since it parses user input. We follow a simple rule: input to Patsy should always be of type str. That means
that on Python 2, you should pass byte-strings (not unicode), and on Python 3, you should pass unicode strings (not
byte-strings). Similarly, when Patsy passes text back (e.g. DesignInfo.column_names), it’s always in the form
of a str.

In addition to this being the most convenient for users (you never need to use any b”weird” u”prefixes” when writing a
formula string), it’s actually a necessary consequence of a deeper change in the Python language: in Python 2, Python
code itself is represented as byte-strings, and that’s the only form of input accepted by the tokenize module. On the
other hand, Python 3’s tokenizer and parser use unicode, and since Patsy processes Python code, it has to follow suit.
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CHAPTER

TEN

PATSY API REFERENCE

This is a complete reference for everything you get when you import patsy.

10.1 Basic API

patsy.dmatrix(formula_like, data={}, eval_env=0, NA_action=’drop’, return_type=’matrix’)
Construct a single design matrix given a formula_like and data.

Parameters

• formula_like – An object that can be used to construct a design matrix. See below.

• data – A dict-like object that can be used to look up variables referenced in formula_like.

• eval_env – Either a EvalEnvironmentwhich will be used to look up any variables refer-
enced in formula_like that cannot be found in data, or else a depth represented as an integer
which will be passed to EvalEnvironment.capture(). eval_env=0 means to use
the context of the function calling dmatrix() for lookups. If calling this function from a
library, you probably want eval_env=1, which means that variables should be resolved
in your caller’s namespace.

• NA_action – What to do with rows that contain missing values. You can "drop" them,
"raise" an error, or for customization, pass an NAAction object. See NAAction for
details on what values count as ‘missing’ (and how to alter this).

• return_type – Either "matrix" or "dataframe". See below.

The formula_like can take a variety of forms. You can use any of the following:

•(The most common option) A formula string like "x1 + x2" (for dmatrix()) or "y ~ x1 + x2"
(for dmatrices()). For details see How formulas work.

•A ModelDesc, which is a Python object representation of a formula. See How formulas work and Model
specification for experts and computers for details.

•A DesignMatrixBuilder.

•An object that has a method called __patsy_get_model_desc__(). For details see Model specifi-
cation for experts and computers.

•A numpy array_like (for dmatrix()) or a tuple (array_like, array_like) (for dmatrices()). These
will have metadata added, representation normalized, and then be returned directly. In this case data and
eval_env are ignored. There is special handling for two cases:

–DesignMatrix objects will have their DesignInfo preserved. This allows you to set up custom
column names and term information even if you aren’t using the rest of the patsy machinery.
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–pandas.DataFrame or pandas.Series objects will have their (row) indexes checked. If two
are passed in, their indexes must be aligned. If return_type="dataframe", then their indexes
will be preserved on the output.

Regardless of the input, the return type is always either:

•A DesignMatrix, if return_type="matrix" (the default)

•A pandas.DataFrame, if return_type="dataframe".

The actual contents of the design matrix is identical in both cases, and in both cases a DesignInfo
object will be available in a .design_info attribute on the return value. However, for
return_type="dataframe", any pandas indexes on the input (either in data or directly passed through
formula_like) will be preserved, which may be useful for e.g. time-series models. New in version 0.2.0: The
NA_action argument.

patsy.dmatrices(formula_like, data={}, eval_env=0, NA_action=’drop’, return_type=’matrix’)
Construct two design matrices given a formula_like and data.

This function is identical to dmatrix(), except that it requires (and returns) two matrices instead of one. By
convention, the first matrix is the “outcome” or “y” data, and the second is the “predictor” or “x” data.

See dmatrix() for details.

patsy.incr_dbuilders(formula_like, data_iter_maker, eval_env=0, NA_action=’drop’)
Construct two design matrix builders incrementally from a large data set.

incr_dbuilders() is to incr_dbuilder() as dmatrices() is to dmatrix(). See
incr_dbuilder() for details.

patsy.incr_dbuilder(formula_like, data_iter_maker, eval_env=0, NA_action=’drop’)
Construct a design matrix builder incrementally from a large data set.

Parameters

• formula_like – Similar to dmatrix(), except that explicit matrices are not allowed. Must
be a formula string, a ModelDesc, a DesignMatrixBuilder, or an object with a
__patsy_get_model_desc__ method.

• data_iter_maker – A zero-argument callable which returns an iterator over dict-like data
objects. This must be a callable rather than a simple iterator because sufficiently complex
formulas may require multiple passes over the data (e.g. if there are nested stateful trans-
forms).

• eval_env – Either a EvalEnvironmentwhich will be used to look up any variables refer-
enced in formula_like that cannot be found in data, or else a depth represented as an integer
which will be passed to EvalEnvironment.capture(). eval_env=0 means to use
the context of the function calling incr_dbuilder() for lookups. If calling this func-
tion from a library, you probably want eval_env=1, which means that variables should
be resolved in your caller’s namespace.

• NA_action – An NAAction object or string, used to determine what values count as ‘miss-
ing’ for purposes of determining the levels of categorical factors.

Returns A DesignMatrixBuilder

Tip: for data_iter_maker, write a generator like:

def iter_maker():
for data_chunk in my_data_store:

yield data_chunk

and pass iter_maker (not iter_maker()). New in version 0.2.0: The NA_action argument.
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exception patsy.PatsyError(message, origin=None)
This is the main error type raised by Patsy functions.

In addition to the usual Python exception features, you can pass a second argument to this function specifying
the origin of the error; this is included in any error message, and used to help the user locate errors arising from
malformed formulas. This second argument should be an Origin object, or else an arbitrary object with a
.origin attribute. (If it is neither of these things, then it will simply be ignored.)

For ordinary display to the user with default formatting, use str(exc). If you want to do something cleverer,
you can use the .message and .origin attributes directly. (The latter may be None.)

10.2 Convenience utilities

patsy.balanced(factor_name=num_levels[, factor_name=num_levels, ..., repeat=1])
Create simple balanced factorial designs for testing.

Given some factor names and the number of desired levels for each, generates a balanced factorial design in the
form of a data dictionary. For example:

In [1]: balanced(a=2, b=3)
Out[1]:
{’a’: [’a1’, ’a1’, ’a1’, ’a2’, ’a2’, ’a2’],
’b’: [’b1’, ’b2’, ’b3’, ’b1’, ’b2’, ’b3’]}

By default it produces exactly one instance of each combination of levels, but if you want multiple replicates
this can be accomplished via the repeat argument:

In [1]: balanced(a=2, b=2, repeat=2)
Out[1]:
{’a’: [’a1’, ’a1’, ’a2’, ’a2’, ’a1’, ’a1’, ’a2’, ’a2’],
’b’: [’b1’, ’b2’, ’b1’, ’b2’, ’b1’, ’b2’, ’b1’, ’b2’]}

patsy.demo_data(*names, nlevels=2, min_rows=5)
Create simple categorical/numerical demo data.

Pass in a set of variable names, and this function will return a simple data set using those variable names.

Names whose first letter falls in the range “a” through “m” will be made categorical (with nlevels levels). Those
that start with a “p” through “z” are numerical.

We attempt to produce a balanced design on the categorical variables, repeating as necessary to generate at least
min_rows data points. Categorical variables are returned as a list of strings.

Numerical data is generated by sampling from a normal distribution. A fixed random seed is used, so that
identical calls to demo_data() will produce identical results. Numerical data is returned in a numpy array.

Example:

10.3 Design metadata

class patsy.DesignInfo(column_names, term_slices=None, term_name_slices=None, builder=None)
A DesignInfo object holds metadata about a design matrix.

This is the main object that Patsy uses to pass information to statistical libraries. Usually encountered as the
.design_info attribute on design matrices.

Here’s an example of the most common way to get a DesignInfo:
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In [1]: mat = dmatrix("a + x", demo_data("a", "x", nlevels=3))

In [2]: di = mat.design_info

column_names
The names of each column, represented as a list of strings in the proper order. Guaranteed to exist.

In [1]: di.column_names
Out[1]: [’Intercept’, ’a[T.a2]’, ’a[T.a3]’, ’x’]

column_name_indexes
An OrderedDict mapping column names (as strings) to column indexes (as integers). Guaranteed to
exist and to be sorted from low to high.

In [1]: di.column_name_indexes
Out[1]: OrderedDict([(’Intercept’, 0), (’a[T.a2]’, 1), (’a[T.a3]’, 2), (’x’, 3)])

term_names
The names of each term, represented as a list of strings in the proper order. Guaranteed to exist. There is a
one-to-many relationship between columns and terms – each term generates one or more columns.

In [1]: di.term_names
Out[1]: [’Intercept’, ’a’, ’x’]

term_name_slices
An OrderedDict mapping term names (as strings) to Python slice() objects indicating which
columns correspond to each term. Guaranteed to exist. The slices are guaranteed to be sorted from left to
right and to cover the whole range of columns with no overlaps or gaps.

In [1]: di.term_name_slices
Out[1]: OrderedDict([(’Intercept’, slice(0, 1, None)), (’a’, slice(1, 3, None)), (’x’, slice(3, 4, None))])

terms
A list of Term objects representing each term. May be None, for example if a user passed in a plain
preassembled design matrix rather than using the Patsy machinery.

In [1]: di.terms
Out[1]: [Term([]), Term([EvalFactor(’a’)]), Term([EvalFactor(’x’)])]

In [2]: [term.name() for term in di.terms]
Out[2]: [’Intercept’, ’a’, ’x’]

term_slices
An OrderedDict mapping Term objects to Python slice() objects indicating which columns corre-
spond to which terms. Like terms, this may be None.

In [1]: di.term_slices
Out[1]: OrderedDict([(Term([]), slice(0, 1, None)), (Term([EvalFactor(’a’)]), slice(1, 3, None)), (Term([EvalFactor(’x’)]), slice(3, 4, None))])

builder
A DesignMatrixBuilder object that can be used to generate more design matrices of this type (e.g.
for prediction). May be None.

A number of convenience methods are also provided that take advantage of the above metadata:

describe()
Returns a human-readable string describing this design info.

Example:

66 Chapter 10. patsy API reference

http://docs.python.org/library/collections.html#collections.OrderedDict
http://docs.python.org/library/collections.html#collections.OrderedDict
http://docs.python.org/library/collections.html#collections.OrderedDict


patsy Documentation, Release 0.2.0

In [1]: y, X = dmatrices("y ~ x1 + x2", demo_data("y", "x1", "x2"))

In [2]: y.design_info.describe()
Out[2]: ’y’

In [3]: X.design_info.describe()
Out[3]: ’1 + x1 + x2’

Warning: There is no guarantee that the strings returned by this function can be parsed as formulas.
They are best-effort descriptions intended for human users.

linear_constraint(constraint_likes)
Construct a linear constraint in matrix form from a (possibly symbolic) description.

Possible inputs:

•A dictionary which is taken as a set of equality constraint. Keys can be either string column names,
or integer column indexes.

•A string giving a arithmetic expression referring to the matrix columns by name.

•A list of such strings which are ANDed together.

•A tuple (A, b) where A and b are array_likes, and the constraint is Ax = b. If necessary, these will be
coerced to the proper dimensionality by appending dimensions with size 1.

The string-based language has the standard arithmetic operators, / * + - and parentheses, plus “=” is used
for equality and ”,” is used to AND together multiple constraint equations within a string. You can If no
= appears in some expression, then that expression is assumed to be equal to zero. Division is always
float-based, even if __future__.true_division isn’t in effect.

Returns a LinearConstraint object.

Examples:

di = DesignInfo(["x1", "x2", "x3"])

# Equivalent ways to write x1 == 0:
di.linear_constraint({"x1": 0}) # by name
di.linear_constraint({0: 0}) # by index
di.linear_constraint("x1 = 0") # string based
di.linear_constraint("x1") # can leave out "= 0"
di.linear_constraint("2 * x1 = (x1 + 2 * x1) / 3")
di.linear_constraint(([1, 0, 0], 0)) # constraint matrices

# Equivalent ways to write x1 == 0 and x3 == 10
di.linear_constraint({"x1": 0, "x3": 10})
di.linear_constraint({0: 0, 2: 10})
di.linear_constraint({0: 0, "x3": 10})
di.linear_constraint("x1 = 0, x3 = 10")
di.linear_constraint("x1, x3 = 10")
di.linear_constraint(["x1", "x3 = 0"]) # list of strings
di.linear_constraint("x1 = 0, x3 - 10 = x1")
di.linear_constraint([[1, 0, 0], [0, 0, 1]], [0, 10])

# You can also chain together equalities, just like Python:
di.linear_constraint("x1 = x2 = 3")

slice(columns_specifier)
Locate a subset of design matrix columns, specified symbolically.
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A patsy design matrix has two levels of structure: the individual columns (which are named), and the terms
in the formula that generated those columns. This is a one-to-many relationship: a single term may span
several columns. This method provides a user-friendly API for locating those columns.

(While we talk about columns here, this is probably most useful for indexing into other arrays that are
derived from the design matrix, such as regression coefficients or covariance matrices.)

The columns_specifier argument can take a number of forms:

•A term name

•A column name

•A Term object

•An integer giving a raw index

•A raw slice object

In all cases, a Python slice() object is returned, which can be used directly for indexing.

Example:

y, X = dmatrices("y ~ a", demo_data("y", "a", nlevels=3))
betas = np.linalg.lstsq(X, y)[0]
a_betas = betas[X.design_info.slice("a")]

(If you want to look up a single individual column by name, use
design_info.column_name_indexes[name].)

classmethod from_array(array_like, default_column_prefix=’column’)
Find or construct a DesignInfo appropriate for a given array_like.

If the input array_like already has a .design_info attribute, then it will be returned. Otherwise, a new
DesignInfo object will be constructed, using names either taken from the array_like (e.g., for a pandas
DataFrame with named columns), or constructed using default_column_prefix.

This is how dmatrix() (for example) creates a DesignInfo object if an arbitrary matrix is passed in.

Parameters

• array_like – An ndarray or pandas container.

• default_column_prefix – If it’s necessary to invent column names, then this will be used
to construct them.

Returns a DesignInfo object

class patsy.DesignMatrix
A simple numpy array subclass that carries design matrix metadata.

design_info
A DesignInfo object containing metadata about this design matrix.

This class also defines a fancy __repr__ method with labeled columns. Otherwise it is identical to a regular
numpy ndarray.

Warning: You should never check for this class using isinstance(). Limitations of the numpy API
mean that it is impossible to prevent the creation of numpy arrays that have type DesignMatrix, but that
are not actually design matrices (and such objects will behave like regular ndarrays in every way). Instead,
check for the presence of a .design_info attribute – this will be present only on “real” DesignMatrix
objects.
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static __new__(input_array, design_info=None, default_column_prefix=’column’)
Create a DesignMatrix, or cast an existing matrix to a DesignMatrix.

A call like:

DesignMatrix(my_array)

will convert an arbitrary array_like object into a DesignMatrix.

The return from this function is guaranteed to be a two-dimensional ndarray with a real-valued floating
point dtype, and a .design_info attribute which matches its shape. If the design_info argument is not
given, then one is created via DesignInfo.from_array() using the given default_column_prefix.

Depending on the input array, it is possible this will pass through its input unchanged, or create a view.

10.4 Stateful transforms

Patsy comes with a number of stateful transforms built in:

patsy.center(x)
A stateful transform that centers input data, i.e., subtracts the mean.

If input has multiple columns, centers each column separately.

Equivalent to standardize(x, rescale=False)

patsy.standardize(x, center=True, rescale=True, ddof=0)
A stateful transform that standardizes input data, i.e. it subtracts the mean and divides by the sample standard
deviation.

Either centering or rescaling or both can be disabled by use of keyword arguments. The ddof argument controls
the delta degrees of freedom when computing the standard deviation (cf. numpy.std()). The default of
ddof=0 produces the maximum likelihood estimate; use ddof=1 if you prefer the square root of the unbiased
estimate of the variance.

If input has multiple columns, standardizes each column separately.

Note: This function computes the mean and standard deviation using a memory-efficient online algorithm,
making it suitable for use with large incrementally processed data-sets.

patsy.scale(x, center=True, rescale=True, ddof=0)
An alias for standardize(), for R compatibility.

Finally, this is not itself a stateful transform, but it’s useful if you want to define your own:

patsy.stateful_transform(class_)
Create a stateful transform callable object from a class that fulfills the stateful transform protocol.

10.5 Handling categorical data

class patsy.Treatment(reference=None)
Treatment coding (also known as dummy coding).

This is the default coding.
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For reduced-rank coding, one level is chosen as the “reference”, and its mean behaviour is represented by the
intercept. Each column of the resulting matrix represents the difference between the mean of one level and this
reference level.

For full-rank coding, classic “dummy” coding is used, and each column of the resulting matrix represents the
mean of the corresponding level.

The reference level defaults to the first level, or can be specified explicitly.

# reduced rank
In [1]: dmatrix("C(a, Treatment)", balanced(a=3))
Out[1]:
DesignMatrix with shape (3, 3)
Intercept C(a, Treatment)[T.a2] C(a, Treatment)[T.a3]

1 0 0
1 1 0
1 0 1

Terms:
’Intercept’ (column 0)
’C(a, Treatment)’ (columns 1:3)

# full rank
In [2]: dmatrix("0 + C(a, Treatment)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
C(a, Treatment)[a1] C(a, Treatment)[a2] C(a, Treatment)[a3]

1 0 0
0 1 0
0 0 1

Terms:
’C(a, Treatment)’ (columns 0:3)

# Setting a reference level
In [3]: dmatrix("C(a, Treatment(1))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
Intercept C(a, Treatment(1))[T.a1] C(a, Treatment(1))[T.a3]

1 1 0
1 0 0
1 0 1

Terms:
’Intercept’ (column 0)
’C(a, Treatment(1))’ (columns 1:3)

In [4]: dmatrix("C(a, Treatment(’a2’))", balanced(a=3))
Out[4]:
DesignMatrix with shape (3, 3)
Intercept C(a, Treatment(’a2’))[T.a1] C(a, Treatment(’a2’))[T.a3]

1 1 0
1 0 0
1 0 1

Terms:
’Intercept’ (column 0)
"C(a, Treatment(’a2’))" (columns 1:3)

Equivalent to R contr.treatment. The R documentation suggests that using
Treatment(reference=-1) will produce contrasts that are “equivalent to those produced by many
(but not all) SAS procedures”.

class patsy.Diff
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Backward difference coding.

This coding scheme is useful for ordered factors, and compares the mean of each level with the preceding level.
So you get the second level minus the first, the third level minus the second, etc.

For full-rank coding, a standard intercept term is added (which gives the mean value for the first level).

Examples:

# Reduced rank
In [1]: dmatrix("C(a, Diff)", balanced(a=3))
Out[1]:
DesignMatrix with shape (3, 3)
Intercept C(a, Diff)[D.a1] C(a, Diff)[D.a2]

1 -0.66667 -0.33333
1 0.33333 -0.33333
1 0.33333 0.66667

Terms:
’Intercept’ (column 0)
’C(a, Diff)’ (columns 1:3)

# Full rank
In [2]: dmatrix("0 + C(a, Diff)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
C(a, Diff)[D.a1] C(a, Diff)[D.a2] C(a, Diff)[D.a3]

1 -0.66667 -0.33333
1 0.33333 -0.33333
1 0.33333 0.66667

Terms:
’C(a, Diff)’ (columns 0:3)

class patsy.Poly(scores=None)
Orthogonal polynomial contrast coding.

This coding scheme treats the levels as ordered samples from an underlying continuous scale, whose effect takes
an unknown functional form which is Taylor-decomposed into the sum of a linear, quadratic, etc. components.

For reduced-rank coding, you get a linear column, a quadratic column, etc., up to the number of levels provided.

For full-rank coding, the same scheme is used, except that the zero-order constant polynomial is also included.
I.e., you get an intercept column included as part of your categorical term.

By default the levels are treated as equally spaced, but you can override this by providing a value for the scores
argument.

Examples:

# Reduced rank
In [1]: dmatrix("C(a, Poly)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
Intercept C(a, Poly).Linear C(a, Poly).Quadratic C(a, Poly).Cubic

1 -0.67082 0.5 -0.22361
1 -0.22361 -0.5 0.67082
1 0.22361 -0.5 -0.67082
1 0.67082 0.5 0.22361

Terms:
’Intercept’ (column 0)
’C(a, Poly)’ (columns 1:4)

# Full rank

10.5. Handling categorical data 71

https://en.wikipedia.org/wiki/Taylor_series


patsy Documentation, Release 0.2.0

In [2]: dmatrix("0 + C(a, Poly)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
C(a, Poly).Constant C(a, Poly).Linear C(a, Poly).Quadratic

1 -0.70711 0.40825
1 -0.00000 -0.81650
1 0.70711 0.40825

Terms:
’C(a, Poly)’ (columns 0:3)

# Explicit scores
In [3]: dmatrix("C(a, Poly([1, 2, 10]))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
Intercept C(a, Poly([1, 2, 10])).Linear C(a, Poly([1, 2, 10])).Quadratic

1 -0.47782 0.66208
1 -0.33447 -0.74485
1 0.81229 0.08276

Terms:
’Intercept’ (column 0)
’C(a, Poly([1, 2, 10]))’ (columns 1:3)

This is equivalent to R’s contr.poly. (But note that in R, reduced rank encodings are always dummy-coded,
regardless of what contrast you have set.)

class patsy.Sum(omit=None)
Deviation coding (also known as sum-to-zero coding).

Compares the mean of each level to the mean-of-means. (In a balanced design, compares the mean of each level
to the overall mean.)

For full-rank coding, a standard intercept term is added.

One level must be omitted to avoid redundancy; by default this is the last level, but this can be adjusted via the
omit argument.

Warning: There are multiple definitions of ‘deviation coding’ in use. Make sure this is the one you expect
before trying to interpret your results!

Examples:

# Reduced rank
In [1]: dmatrix("C(a, Sum)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
Intercept C(a, Sum)[S.a1] C(a, Sum)[S.a2] C(a, Sum)[S.a3]

1 1 0 0
1 0 1 0
1 0 0 1
1 -1 -1 -1

Terms:
’Intercept’ (column 0)
’C(a, Sum)’ (columns 1:4)

# Full rank
In [2]: dmatrix("0 + C(a, Sum)", balanced(a=4))
Out[2]:
DesignMatrix with shape (4, 4)
C(a, Sum)[mean] C(a, Sum)[S.a1] C(a, Sum)[S.a2] C(a, Sum)[S.a3]
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1 1 0 0
1 0 1 0
1 0 0 1
1 -1 -1 -1

Terms:
’C(a, Sum)’ (columns 0:4)

# Omit a different level
In [3]: dmatrix("C(a, Sum(1))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
Intercept C(a, Sum(1))[S.a1] C(a, Sum(1))[S.a3]

1 1 0
1 -1 -1
1 0 1

Terms:
’Intercept’ (column 0)
’C(a, Sum(1))’ (columns 1:3)

In [4]: dmatrix("C(a, Sum(’a1’))", balanced(a=3))
Out[4]:
DesignMatrix with shape (3, 3)
Intercept C(a, Sum(’a1’))[S.a2] C(a, Sum(’a1’))[S.a3]

1 -1 -1
1 1 0
1 0 1

Terms:
’Intercept’ (column 0)
"C(a, Sum(’a1’))" (columns 1:3)

This is equivalent to R’s contr.sum.

class patsy.Helmert
Helmert contrasts.

Compares the second level with the first, the third with the average of the first two, and so on.

For full-rank coding, a standard intercept term is added.

Warning: There are multiple definitions of ‘Helmert coding’ in use. Make sure this is the one you expect
before trying to interpret your results!

Examples:

# Reduced rank
In [1]: dmatrix("C(a, Helmert)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
Intercept C(a, Helmert)[H.a2] C(a, Helmert)[H.a3] C(a, Helmert)[H.a4]

1 -1 -1 -1
1 1 -1 -1
1 0 2 -1
1 0 0 3

Terms:
’Intercept’ (column 0)
’C(a, Helmert)’ (columns 1:4)

# Full rank
In [2]: dmatrix("0 + C(a, Helmert)", balanced(a=4))
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Out[2]:
DesignMatrix with shape (4, 4)
Columns:

[’C(a, Helmert)[H.intercept]’,
’C(a, Helmert)[H.a2]’,
’C(a, Helmert)[H.a3]’,
’C(a, Helmert)[H.a4]’]

Terms:
’C(a, Helmert)’ (columns 0:4)

(to view full data, use np.asarray(this_obj))

This is equivalent to R’s contr.helmert.

class patsy.ContrastMatrix(matrix, column_suffixes)
A simple container for a matrix used for coding categorical factors.

Attributes:

matrix
A 2d ndarray, where each column corresponds to one column of the resulting design matrix, and each
row contains the entries for a single categorical variable level. Usually n-by-n for a full rank coding or
n-by-(n-1) for a reduced rank coding, though other options are possible.

column_suffixes
A list of strings to be appended to the factor name, to produce the final column names. E.g. for treatment
coding the entries will look like "[T.level1]".

10.6 Spline regression

patsy.bs(x, df=None, knots=None, degree=3, include_intercept=False, lower_bound=None, up-
per_bound=None)

Generates a B-spline basis for x, allowing non-linear fits. The usual usage is something like:

y ~ 1 + bs(x, 4)

to fit y as a smooth function of x, with 4 degrees of freedom given to the smooth.

Parameters

• df – The number of degrees of freedom to use for this spline. The return value will have this
many columns. You must specify at least one of df and knots.

• knots – The interior knots to use for the spline. If unspecified, then equally spaced quantiles
of the input data are used. You must specify at least one of df and knots.

• degree – The degree of the spline to use.

• include_intercept – If True, then the resulting spline basis will span the intercept term
(i.e., the constant function). If False (the default) then this will not be the case, which is
useful for avoiding overspecification in models that include multiple spline terms and/or an
intercept term.

• lower_bound – The lower exterior knot location.

• upper_bound – The upper exterior knot location.

A spline with degree=0 is piecewise constant with breakpoints at each knot, and the default knot positions
are quantiles of the input. So if you find yourself in the situation of wanting to quantize a continuous variable
into equal-sized bins with a constant effect across each bin, you can use bs(x, num_bins, degree=0).
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Similarly, a spline with degree=1 is piecewise linear with breakpoints at each knot.

The default is degree=3, which gives a cubic b-spline.

This is a stateful transform (for details see Stateful transforms). If knots, lower_bound, or upper_bound
are not specified, they will be calculated from the data and then the chosen values will be remembered and
re-used for prediction from the fitted model.

Using this function requires scipy be installed.

Note: This function is very similar to the R function of the same name. In cases where both return output at
all (e.g., R’s bs will raise an error if degree=0, while patsy’s will not), they should produce identical output
given identical input and parameter settings.

Warning: I’m not sure on what the proper handling of points outside the lower/upper bounds is, so for now
attempting to evaluate a spline basis at such points produces an error. Patches gratefully accepted.

New in version 0.2.0.

10.7 Working with formulas programmatically

class patsy.Term(factors)
The interaction between a collection of factor objects.

This is one of the basic types used in representing formulas, and corresponds to an expression like "a:b:c" in
a formula string. For details, see How formulas work and Model specification for experts and computers.

Terms are hashable and compare by value.

Attributes:

factors
A tuple of factor objects.

patsy.INTERCEPT
This is a pre-instantiated zero-factors Term object representing the intercept, useful for making your code
clearer. Do remember though that this is not a singleton object, i.e., you should compare against it using ==, not
is.

class patsy.LookupFactor(varname, force_categorical=False, contrast=None, levels=None, ori-
gin=None)

A simple factor class that simply looks up a named entry in the given data.

Useful for programatically constructing formulas, and as a simple example of the factor protocol. For details
see Model specification for experts and computers.

Example:

dmatrix(ModelDesc([], [Term([LookupFactor("x")])]), {"x": [1, 2, 3]})

Parameters

• varname – The name of this variable; used as a lookup key in the passed in data dictio-
nary/DataFrame/whatever.

• force_categorical – If True, then treat this factor as categorical. (Equivalent to using C()
in a regular formula, but of course you can’t do that with a LookupFactor.
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• contrast – If given, the contrast to use; see C(). (Requires
force_categorical=True.)

• levels – If given, the categorical levels; see C(). (Requires
force_categorical=True.)

• origin – Either None, or the Origin of this factor for use in error reporting.

New in version 0.2.0: The force_categorical and related arguments.

class patsy.EvalFactor(code, eval_env, origin=None)
A factor class that executes arbitrary Python code and supports stateful transforms.

Parameters

• code – A string containing a Python expression, that will be evaluated to produce this fac-
tor’s value.

• eval_env – The EvalEnvironment where code will be evaluated.

This is the standard factor class that is used when parsing formula strings and implements the standard stateful
transform processing. See Stateful transforms and Model specification for experts and computers.

Two EvalFactor’s are considered equal (e.g., for purposes of redundancy detection) if they use the same evalu-
ation environment and they contain the same token stream. Basically this means that the source code must be
identical except for whitespace:

env = EvalEnvironment.capture()
assert EvalFactor("a + b", env) == EvalFactor("a+b", env)
assert EvalFactor("a + b", env) != EvalFactor("b + a", env)

class patsy.ModelDesc(lhs_termlist, rhs_termlist)
A simple container representing the termlists parsed from a formula.

This is a simple container object which has exactly the same representational power as a formula string, but
is a Python object instead. You can construct one by hand, and pass it to functions like dmatrix() or
incr_dbuilder() that are expecting a formula string, but without having to do any messy string manip-
ulation. For details see Model specification for experts and computers.

Attributes:

lhs_termlist
rhs_termlist

Two termlists representing the left- and right-hand sides of a formula, suitable for passing to
design_matrix_builders().

10.8 Working with the Python execution environment

class patsy.EvalEnvironment(namespaces, flags=0)
Represents a Python execution environment.

Encapsulates a namespace for variable lookup and set of __future__ flags.

add_outer_namespace(namespace)
Expose the contents of a dict-like object to the encapsulated environment.

The given namespace will be checked last, after all existing namespace lookups have failed.

classmethod capture(eval_env=0, reference=0)
Capture an execution environment from the stack.
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If eval_env is already an EvalEnvironment, it is returned unchanged. Otherwise, we walk up the stack
by eval_env + reference steps and capture that function’s evaluation environment.

For eval_env=0 and reference=0, the default, this captures the stack frame of the function that calls
capture(). If eval_env + reference is 1, then we capture that function’s caller, etc.

This somewhat complicated calling convention is designed to be convenient for functions which want to
capture their caller’s environment by default, but also allow explicit environments to be specified. See the
second example.

Example:

x = 1
this_env = EvalEnvironment.capture()
assert this_env["x"] == 1
def child_func():

return EvalEnvironment.capture(1)
this_env_from_child = child_func()
assert this_env_from_child["x"] == 1

Example:

# This function can be used like:
# my_model(formula_like, data)
# -> evaluates formula_like in caller’s environment
# my_model(formula_like, data, eval_env=1)
# -> evaluates formula_like in caller’s caller’s environment
# my_model(formula_like, data, eval_env=my_env)
# -> evaluates formula_like in environment ’my_env’
def my_model(formula_like, data, eval_env=0):

eval_env = EvalEnvironment.capture(eval_env, reference=1)
return model_setup_helper(formula_like, data, eval_env)

This is how dmatrix() works.

eval(expr, source_name=’<string>’, inner_namespace={})
Evaluate some Python code in the encapsulated environment.

Parameters

• expr – A string containing a Python expression.

• source_name – A name for this string, for use in tracebacks.

• inner_namespace – A dict-like object that will be checked first when expr attempts to
access any variables.

Returns The value of expr.

namespace
A dict-like object that can be used to look up variables accessible from the encapsulated environment.

10.9 Building design matrices

patsy.design_matrix_builders(termlists, data_iter_maker, NA_action=’drop’)
Construct several DesignMatrixBuilders from termlists.

This is one of Patsy’s fundamental functions. This function and build_design_matrices() together
form the API to the core formula interpretation machinery.

Parameters
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• termlists – A list of termlists, where each termlist is a list of Term objects which together
specify a design matrix.

• data_iter_maker – A zero-argument callable which returns an iterator over dict-like data
objects. This must be a callable rather than a simple iterator because sufficiently complex
formulas may require multiple passes over the data (e.g. if there are nested stateful trans-
forms).

• NA_action – An NAAction object or string, used to determine what values count as ‘miss-
ing’ for purposes of determining the levels of categorical factors.

Returns A list of DesignMatrixBuilder objects, one for each termlist passed in.

This function performs zero or more iterations over the data in order to sniff out any necessary information about
factor types, set up stateful transforms, pick column names, etc.

See How formulas work for details. New in version 0.2.0: The NA_action argument.

class patsy.DesignMatrixBuilder
This is an opaque class that represents Patsy’s knowledge about how to build a design matrix. You get these
objects from design_matrix_builders(), and you pass them to build_design_matrices().

design_info
This attribute gives metadata about the matrices that this builder object can produce, in the form of a
DesignInfo object.

subset(which_terms)
Create a new DesignMatrixBuilder that includes only a subset of the terms that this object does.

For example, if builder has terms x, y, and z, then:

builder2 = builder.subset(["x", "z"])

will return a new builder that will return design matrices with only the columns corresponding to the terms
x and z. After we do this, then in general these two expressions will return the same thing (here we assume
that x, y, and z each generate a single column of the output):

build_design_matrix([builder], data)[0][:, [0, 2]]
build_design_matrix([builder2], data)[0]

However, a critical difference is that in the second case, data need not contain any values for y. This is
very useful when doing prediction using a subset of a model, in which situation R usually forces you to
specify dummy values for y.

If using a formula to specify the terms to include, remember that like any formula, the intercept term will
be included by default, so use 0 or -1 in your formula if you want to avoid this.

Parameters which_terms – The terms which should be kept in the new
DesignMatrixBuilder. If this is a string, then it is parsed as a formula, and
then the names of the resulting terms are taken as the terms to keep. If it is a list, then it can
contain a mixture of term names (as strings) and Term objects.

patsy.build_design_matrices(builders, data, NA_action=’drop’, return_type=’matrix’,
dtype=dtype(‘float64’))

Construct several design matrices from DesignMatrixBuilder objects.

This is one of Patsy’s fundamental functions. This function and design_matrix_builders() together
form the API to the core formula interpretation machinery.

Parameters

• builders – A list of DesignMatrixBuilders specifying the design matrices to be built.
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• data – A dict-like object which will be used to look up data.

• NA_action – What to do with rows that contain missing values. You can "drop" them,
"raise" an error, or for customization, pass an NAAction object. See NAAction for
details on what values count as ‘missing’ (and how to alter this).

• return_type – Either "matrix" or "dataframe". See below.

• dtype – The dtype of the returned matrix. Useful if you want to use single-precision or
extended-precision.

This function returns either a list of DesignMatrix objects (for return_type="matrix") or a list of
pandas.DataFrame objects (for return_type="dataframe"). In the latter case, the DataFrames
will preserve any (row) indexes that were present in the input, which may be useful for time-series models
etc. In any case, all returned design matrices will have .design_info attributes containing the appropriate
DesignInfo objects.

Unlike design_matrix_builders(), this function takes only a simple data argument, not any kind of
iterator. That’s because this function doesn’t need a global view of the data – everything that depends on the
whole data set is already encapsulated in the builders. If you are incrementally processing a large data set,
simply call this function for each chunk. New in version 0.2.0: The NA_action argument.

10.10 Missing values

class patsy.NAAction(on_NA=’drop’, NA_types=[’None’, ‘NaN’])
An NAAction object defines a strategy for handling missing data.

“NA” is short for “Not Available”, and is used to refer to any value which is somehow unmeasured or unavailable.
In the long run, it is devoutly hoped that numpy will gain first-class missing value support. Until then, we work
around this lack as best we’re able.

There are two parts to this: First, we have to determine what counts as missing data. For numerical data, the
default is to treat NaN values (e.g., numpy.nan) as missing. For categorical data, the default is to treat NaN
values, and also the Python object None, as missing. (This is consistent with how pandas does things, so if
you’re already using None/NaN to mark missing data in your pandas DataFrames, you’re good to go.)

Second, we have to decide what to do with any missing data when we encounter it. One option is to simply
discard any rows which contain missing data from our design matrices (drop). Another option is to raise an
error (raise). A third option would be to simply let the missing values pass through into the returned design
matrices. However, this last option is not yet implemented, because of the lack of any standard way to represent
missing values in arbitrary numpy matrices; we’re hoping numpy will get this sorted out before we standardize
on anything ourselves.

You can control how patsy handles missing data through the NA_action= argument to functions like
build_design_matrices() and dmatrix(). If all you want to do is to choose between drop and
raise behaviour, you can pass one of those strings as the NA_action= argument directly. If you want more
fine-grained control over how missing values are detected and handled, then you can create an instance of this
class, or your own object that implements the same interface, and pass that as the NA_action= argument
instead.

The NAAction constructor takes the following arguments:

Parameters

• on_NA – How to handle missing values. The default is "drop", which removes all rows
from all matrices which contain any missing values. Also available is "raise", which
raises an exception when any missing values are encountered.
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• NA_types – Which rules are used to identify missing values, as a list of strings. Allowed
values are:

– "None": treat the None object as missing in categorical data.

– "NaN": treat floating point NaN values as missing in categorical and numerical data.

New in version 0.2.0.

handle_NA(values, is_NAs, origins)
Takes a set of factor values that may have NAs, and handles them appropriately.

Parameters

• values – A list of ndarray objects representing the data. These may be 1- or 2-dimensional,
and may be of varying dtype. All will have the same number of rows (or entries, for 1-d
arrays).

• is_NAs – A list with the same number of entries as values, containing boolean ndarray
objects that indicate which rows contain NAs in the corresponding entry in values.

• origins – A list with the same number of entries as values, containing information on the
origin of each value. If we encounter a problem with some particular value, we use the
corresponding entry in origins as the origin argument when raising a PatsyError.

Returns A list of new values (which may have a differing number of rows.)

is_categorical_NA(obj)
Return True if obj is a categorical NA value.

Note that here obj is a single scalar value.

is_numerical_NA(arr)
Returns a 1-d mask array indicating which rows in an array of numerical values contain at least one NA
value.

Note that here arr is a numpy array or pandas DataFrame.

10.11 Linear constraints

class patsy.LinearConstraint(variable_names, coefs, constants=None)
A linear constraint in matrix form.

This object represents a linear constraint of the form Ax = b.

Usually you won’t be constructing these by hand, but instead get them as the return value from
DesignInfo.linear_constraint().

coefs
A 2-dimensional ndarray with float dtype, representing A.

constants
A 2-dimensional single-column ndarray with float dtype, representing b.

variable_names
A list of strings giving the names of the variables being constrained. (Used only for consistency checking.)
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10.12 Origin tracking

class patsy.Origin(code, start, end)
This represents the origin of some object in some string.

For example, if we have an object x1_obj that was produced by parsing the x1 in the formula "y ~ x1:x2",
then we conventionally keep track of that relationship by doing:

x1_obj.origin = Origin("y ~ x1:x2", 4, 6)

Then later if we run into a problem, we can do:

raise PatsyError("invalid factor", x1_obj)

and we’ll produce a nice error message like:

PatsyError: invalid factor
y ~ x1:x2

^^

Origins are compared by value, and hashable.

caretize(indent=0)
Produces a user-readable two line string indicating the origin of some code. Example:

y ~ x1:x2
^^

If optional argument ‘indent’ is given, then both lines will be indented by this much. The returned string
does not have a trailing newline.

classmethod combine(origin_objs)
Class method for combining a set of Origins into one large Origin that spans them.

Example usage: if we wanted to represent the origin of the “x1:x2” term, we could do
Origin.combine([x1_obj, x2_obj]).

Single argument is an iterable, and each element in the iterable should be either:

•An Origin object

•None

•An object that has a .origin attribute which fulfills the above criteria.

Returns either an Origin object, or None.

relevant_code()
Extracts and returns the span of the original code represented by this Origin. Example: x1.
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PATSY.BUILTINS API REFERENCE

This module defines some tools that are automatically made available to code evaluated in formulas. You can also ac-
cess it directly; use from patsy.builtins import * to import the same variables that formula code receives
automatically.

patsy.builtins.I(x)
The identity function. Simply returns its input unchanged.

Since Patsy’s formula parser ignores anything inside a function call syntax, this is useful to ‘hide’ arithmetic
operations from it. For instance:

y ~ x1 + x2

has x1 and x2 as two separate predictors. But in:

y ~ I(x1 + x2)

we instead have a single predictor, defined to be the sum of x1 and x2.

patsy.builtins.Q(name)
A way to ‘quote’ variable names, especially ones that do not otherwise meet Python’s variable name rules.

If x is a variable, Q("x") returns the value of x. (Note that Q takes the string "x", not the value of x itself.)
This works even if instead of x, we have a variable name that would not otherwise be legal in Python.

For example, if you have a column of data named weight.in.kg, then you can’t write:

y ~ weight.in.kg

because Python will try to find a variable named weight, that has an attribute named in, that has an attribute
named kg. (And worse yet, in is a reserved word, which makes this example doubly broken.) Instead, write:

y ~ Q("weight.in.kg")

and all will be well. Note, though, that this requires embedding a Python string inside your formula, which may
require some care with your quote marks. Some standard options include:

my_fit_function("y ~ Q(’weight.in.kg’)", ...)
my_fit_function(’y ~ Q("weight.in.kg")’, ...)
my_fit_function("y ~ Q(\"weight.in.kg\")", ...)

Note also that Q is an ordinary Python function, which means that you can use it in more complex expressions.
For example, this is a legal formula:

y ~ np.sqrt(Q("weight.in.kg"))
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class patsy.builtins.ContrastMatrix(matrix, column_suffixes)
A simple container for a matrix used for coding categorical factors.

Attributes:

matrix
A 2d ndarray, where each column corresponds to one column of the resulting design matrix, and each
row contains the entries for a single categorical variable level. Usually n-by-n for a full rank coding or
n-by-(n-1) for a reduced rank coding, though other options are possible.

column_suffixes
A list of strings to be appended to the factor name, to produce the final column names. E.g. for treatment
coding the entries will look like "[T.level1]".

class patsy.builtins.Treatment(reference=None)
Treatment coding (also known as dummy coding).

This is the default coding.

For reduced-rank coding, one level is chosen as the “reference”, and its mean behaviour is represented by the
intercept. Each column of the resulting matrix represents the difference between the mean of one level and this
reference level.

For full-rank coding, classic “dummy” coding is used, and each column of the resulting matrix represents the
mean of the corresponding level.

The reference level defaults to the first level, or can be specified explicitly.

# reduced rank
In [1]: dmatrix("C(a, Treatment)", balanced(a=3))
Out[1]:
DesignMatrix with shape (3, 3)
Intercept C(a, Treatment)[T.a2] C(a, Treatment)[T.a3]

1 0 0
1 1 0
1 0 1

Terms:
’Intercept’ (column 0)
’C(a, Treatment)’ (columns 1:3)

# full rank
In [2]: dmatrix("0 + C(a, Treatment)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
C(a, Treatment)[a1] C(a, Treatment)[a2] C(a, Treatment)[a3]

1 0 0
0 1 0
0 0 1

Terms:
’C(a, Treatment)’ (columns 0:3)

# Setting a reference level
In [3]: dmatrix("C(a, Treatment(1))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
Intercept C(a, Treatment(1))[T.a1] C(a, Treatment(1))[T.a3]

1 1 0
1 0 0
1 0 1

Terms:
’Intercept’ (column 0)
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’C(a, Treatment(1))’ (columns 1:3)

In [4]: dmatrix("C(a, Treatment(’a2’))", balanced(a=3))
Out[4]:
DesignMatrix with shape (3, 3)
Intercept C(a, Treatment(’a2’))[T.a1] C(a, Treatment(’a2’))[T.a3]

1 1 0
1 0 0
1 0 1

Terms:
’Intercept’ (column 0)
"C(a, Treatment(’a2’))" (columns 1:3)

Equivalent to R contr.treatment. The R documentation suggests that using
Treatment(reference=-1) will produce contrasts that are “equivalent to those produced by many
(but not all) SAS procedures”.

code_with_intercept(levels)

code_without_intercept(levels)

class patsy.builtins.Poly(scores=None)
Orthogonal polynomial contrast coding.

This coding scheme treats the levels as ordered samples from an underlying continuous scale, whose effect takes
an unknown functional form which is Taylor-decomposed into the sum of a linear, quadratic, etc. components.

For reduced-rank coding, you get a linear column, a quadratic column, etc., up to the number of levels provided.

For full-rank coding, the same scheme is used, except that the zero-order constant polynomial is also included.
I.e., you get an intercept column included as part of your categorical term.

By default the levels are treated as equally spaced, but you can override this by providing a value for the scores
argument.

Examples:

# Reduced rank
In [1]: dmatrix("C(a, Poly)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
Intercept C(a, Poly).Linear C(a, Poly).Quadratic C(a, Poly).Cubic

1 -0.67082 0.5 -0.22361
1 -0.22361 -0.5 0.67082
1 0.22361 -0.5 -0.67082
1 0.67082 0.5 0.22361

Terms:
’Intercept’ (column 0)
’C(a, Poly)’ (columns 1:4)

# Full rank
In [2]: dmatrix("0 + C(a, Poly)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
C(a, Poly).Constant C(a, Poly).Linear C(a, Poly).Quadratic

1 -0.70711 0.40825
1 -0.00000 -0.81650
1 0.70711 0.40825

Terms:
’C(a, Poly)’ (columns 0:3)
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# Explicit scores
In [3]: dmatrix("C(a, Poly([1, 2, 10]))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
Intercept C(a, Poly([1, 2, 10])).Linear C(a, Poly([1, 2, 10])).Quadratic

1 -0.47782 0.66208
1 -0.33447 -0.74485
1 0.81229 0.08276

Terms:
’Intercept’ (column 0)
’C(a, Poly([1, 2, 10]))’ (columns 1:3)

This is equivalent to R’s contr.poly. (But note that in R, reduced rank encodings are always dummy-coded,
regardless of what contrast you have set.)

code_with_intercept(levels)

code_without_intercept(levels)

class patsy.builtins.Sum(omit=None)
Deviation coding (also known as sum-to-zero coding).

Compares the mean of each level to the mean-of-means. (In a balanced design, compares the mean of each level
to the overall mean.)

For full-rank coding, a standard intercept term is added.

One level must be omitted to avoid redundancy; by default this is the last level, but this can be adjusted via the
omit argument.

Warning: There are multiple definitions of ‘deviation coding’ in use. Make sure this is the one you expect
before trying to interpret your results!

Examples:

# Reduced rank
In [1]: dmatrix("C(a, Sum)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
Intercept C(a, Sum)[S.a1] C(a, Sum)[S.a2] C(a, Sum)[S.a3]

1 1 0 0
1 0 1 0
1 0 0 1
1 -1 -1 -1

Terms:
’Intercept’ (column 0)
’C(a, Sum)’ (columns 1:4)

# Full rank
In [2]: dmatrix("0 + C(a, Sum)", balanced(a=4))
Out[2]:
DesignMatrix with shape (4, 4)
C(a, Sum)[mean] C(a, Sum)[S.a1] C(a, Sum)[S.a2] C(a, Sum)[S.a3]

1 1 0 0
1 0 1 0
1 0 0 1
1 -1 -1 -1

Terms:
’C(a, Sum)’ (columns 0:4)
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# Omit a different level
In [3]: dmatrix("C(a, Sum(1))", balanced(a=3))
Out[3]:
DesignMatrix with shape (3, 3)
Intercept C(a, Sum(1))[S.a1] C(a, Sum(1))[S.a3]

1 1 0
1 -1 -1
1 0 1

Terms:
’Intercept’ (column 0)
’C(a, Sum(1))’ (columns 1:3)

In [4]: dmatrix("C(a, Sum(’a1’))", balanced(a=3))
Out[4]:
DesignMatrix with shape (3, 3)
Intercept C(a, Sum(’a1’))[S.a2] C(a, Sum(’a1’))[S.a3]

1 -1 -1
1 1 0
1 0 1

Terms:
’Intercept’ (column 0)
"C(a, Sum(’a1’))" (columns 1:3)

This is equivalent to R’s contr.sum.

code_with_intercept(levels)

code_without_intercept(levels)

class patsy.builtins.Helmert
Helmert contrasts.

Compares the second level with the first, the third with the average of the first two, and so on.

For full-rank coding, a standard intercept term is added.

Warning: There are multiple definitions of ‘Helmert coding’ in use. Make sure this is the one you expect
before trying to interpret your results!

Examples:

# Reduced rank
In [1]: dmatrix("C(a, Helmert)", balanced(a=4))
Out[1]:
DesignMatrix with shape (4, 4)
Intercept C(a, Helmert)[H.a2] C(a, Helmert)[H.a3] C(a, Helmert)[H.a4]

1 -1 -1 -1
1 1 -1 -1
1 0 2 -1
1 0 0 3

Terms:
’Intercept’ (column 0)
’C(a, Helmert)’ (columns 1:4)

# Full rank
In [2]: dmatrix("0 + C(a, Helmert)", balanced(a=4))
Out[2]:
DesignMatrix with shape (4, 4)
Columns:
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[’C(a, Helmert)[H.intercept]’,
’C(a, Helmert)[H.a2]’,
’C(a, Helmert)[H.a3]’,
’C(a, Helmert)[H.a4]’]

Terms:
’C(a, Helmert)’ (columns 0:4)

(to view full data, use np.asarray(this_obj))

This is equivalent to R’s contr.helmert.

code_with_intercept(levels)

code_without_intercept(levels)

class patsy.builtins.Diff
Backward difference coding.

This coding scheme is useful for ordered factors, and compares the mean of each level with the preceding level.
So you get the second level minus the first, the third level minus the second, etc.

For full-rank coding, a standard intercept term is added (which gives the mean value for the first level).

Examples:

# Reduced rank
In [1]: dmatrix("C(a, Diff)", balanced(a=3))
Out[1]:
DesignMatrix with shape (3, 3)
Intercept C(a, Diff)[D.a1] C(a, Diff)[D.a2]

1 -0.66667 -0.33333
1 0.33333 -0.33333
1 0.33333 0.66667

Terms:
’Intercept’ (column 0)
’C(a, Diff)’ (columns 1:3)

# Full rank
In [2]: dmatrix("0 + C(a, Diff)", balanced(a=3))
Out[2]:
DesignMatrix with shape (3, 3)
C(a, Diff)[D.a1] C(a, Diff)[D.a2] C(a, Diff)[D.a3]

1 -0.66667 -0.33333
1 0.33333 -0.33333
1 0.33333 0.66667

Terms:
’C(a, Diff)’ (columns 0:3)

code_with_intercept(levels)

code_without_intercept(levels)

patsy.builtins.C(data, contrast=None, levels=None)
Marks some data as being categorical, and specifies how to interpret it.

This is used for three reasons:

•To explicitly mark some data as categorical. For instance, integer data is by default treated as numerical.
If you have data that is stored using an integer type, but where you want patsy to treat each different value
as a different level of a categorical factor, you can wrap it in a call to C to accomplish this. E.g., compare:

dmatrix("a", {"a": [1, 2, 3]})
dmatrix("C(a)", {"a": [1, 2, 3]})

88 Chapter 11. patsy.builtins API reference



patsy Documentation, Release 0.2.0

•To explicitly set the levels or override the default level ordering for categorical data, e.g.:

dmatrix("C(a, levels=["a2", "a1"])", balanced(a=2))

•To override the default coding scheme for categorical data. The contrast argument can be any of:

–A ContrastMatrix object

–A simple 2d ndarray (which is treated the same as a ContrastMatrix object except that you can’t
specify column names)

–An object with methods called code_with_intercept and code_without_intercept, like the built-in con-
trasts (Treatment, Diff, Poly, etc.). See Coding categorical data for more details.

–A callable that returns one of the above.

patsy.builtins.center(x)
A stateful transform that centers input data, i.e., subtracts the mean.

If input has multiple columns, centers each column separately.

Equivalent to standardize(x, rescale=False)

patsy.builtins.standardize(x, center=True, rescale=True, ddof=0)
A stateful transform that standardizes input data, i.e. it subtracts the mean and divides by the sample standard
deviation.

Either centering or rescaling or both can be disabled by use of keyword arguments. The ddof argument controls
the delta degrees of freedom when computing the standard deviation (cf. numpy.std()). The default of
ddof=0 produces the maximum likelihood estimate; use ddof=1 if you prefer the square root of the unbiased
estimate of the variance.

If input has multiple columns, standardizes each column separately.

Note: This function computes the mean and standard deviation using a memory-efficient online algorithm,
making it suitable for use with large incrementally processed data-sets.

patsy.builtins.scale(*args, **kwargs)
standardize(x, center=True, rescale=True, ddof=0)

A stateful transform that standardizes input data, i.e. it subtracts the mean and divides by the sample standard
deviation.

Either centering or rescaling or both can be disabled by use of keyword arguments. The ddof argument controls
the delta degrees of freedom when computing the standard deviation (cf. numpy.std()). The default of
ddof=0 produces the maximum likelihood estimate; use ddof=1 if you prefer the square root of the unbiased
estimate of the variance.

If input has multiple columns, standardizes each column separately.

Note: This function computes the mean and standard deviation using a memory-efficient online algorithm,
making it suitable for use with large incrementally processed data-sets.

patsy.builtins.bs(x, df=None, knots=None, degree=3, include_intercept=False, lower_bound=None,
upper_bound=None)

Generates a B-spline basis for x, allowing non-linear fits. The usual usage is something like:

y ~ 1 + bs(x, 4)

to fit y as a smooth function of x, with 4 degrees of freedom given to the smooth.
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Parameters

• df – The number of degrees of freedom to use for this spline. The return value will have this
many columns. You must specify at least one of df and knots.

• knots – The interior knots to use for the spline. If unspecified, then equally spaced quantiles
of the input data are used. You must specify at least one of df and knots.

• degree – The degree of the spline to use.

• include_intercept – If True, then the resulting spline basis will span the intercept term
(i.e., the constant function). If False (the default) then this will not be the case, which is
useful for avoiding overspecification in models that include multiple spline terms and/or an
intercept term.

• lower_bound – The lower exterior knot location.

• upper_bound – The upper exterior knot location.

A spline with degree=0 is piecewise constant with breakpoints at each knot, and the default knot positions
are quantiles of the input. So if you find yourself in the situation of wanting to quantize a continuous variable
into equal-sized bins with a constant effect across each bin, you can use bs(x, num_bins, degree=0).

Similarly, a spline with degree=1 is piecewise linear with breakpoints at each knot.

The default is degree=3, which gives a cubic b-spline.

This is a stateful transform (for details see Stateful transforms). If knots, lower_bound, or upper_bound
are not specified, they will be calculated from the data and then the chosen values will be remembered and
re-used for prediction from the fitted model.

Using this function requires scipy be installed.

Note: This function is very similar to the R function of the same name. In cases where both return output at
all (e.g., R’s bs will raise an error if degree=0, while patsy’s will not), they should produce identical output
given identical input and parameter settings.

Warning: I’m not sure on what the proper handling of points outside the lower/upper bounds is, so for now
attempting to evaluate a spline basis at such points produces an error. Patches gratefully accepted.

New in version 0.2.0.
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TWELVE

CHANGES

12.1 v0.2.0

Warnings:

• The lowest officially supported Python version is now 2.5. So far as I know everything still works with Python
2.4, but as everyone else has continued to drop support for 2.4, testing on 2.4 has become so much trouble that
I’ve given up.

New features:

• New support for automatically detecting and (optionally) removing missing values (see NAAction).

• New stateful transform for B-spline regression: bs(). (Requires scipy.)

• Added a core API to make it possible to run predictions on only a subset of model terms. (This
is particularly useful for e.g. plotting the isolated effect of a single fitted spline term.) See
DesignMatrixBuilder.subset().

• LookupFactor now allows users to mark variables as categorical directly.

• pandas.Categorical objects are now recognized as representing categorical data and handled appropri-
ately.

• Better error reporting for exceptions raised by user code inside formulas. We now, whenever possible, tag the
generated exception with information about which factor’s code raised it, and use this information to give better
error reporting.

• EvalEnvironment.capture() now takes a reference argument, to make it easier to implement new
dmatrix()-like functions.

Other: miscellaneous doc improvements and bug fixes.

12.2 v0.1.0

First public release.
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INDICES AND TABLES

• genindex

• search
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94 Chapter 13. Indices and tables



PYTHON MODULE INDEX

p
patsy, ??
patsy.builtins, ??
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